Quantum computation in a hybrid array of molecules and Rydberg atoms
- URL: http://arxiv.org/abs/2204.04276v2
- Date: Sun, 5 Jun 2022 19:58:16 GMT
- Title: Quantum computation in a hybrid array of molecules and Rydberg atoms
- Authors: Chi Zhang and M. R. Tarbutt
- Abstract summary: We show that an array of polar molecules interacting with Rydberg atoms is a promising hybrid system for scalable quantum computation.
Quantum information is stored in long-lived hyperfine or rotational states of molecules.
A two-qubit gate based on this interaction has a duration of 1 $mu$s and an achievable fidelity of 99.9%.
- Score: 7.425093155951875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that an array of polar molecules interacting with Rydberg atoms is a
promising hybrid system for scalable quantum computation. Quantum information
is stored in long-lived hyperfine or rotational states of molecules which
interact indirectly through resonant dipole-dipole interactions with Rydberg
atoms. A two-qubit gate based on this interaction has a duration of 1 $\mu$s
and an achievable fidelity of 99.9%. The gate has little sensitivity to the
motional states of the particles -- the molecules can be in thermal states, the
atoms do not need to be trapped during Rydberg excitation, the gate does not
heat the molecules, and heating of the atoms has a negligible effect. Within a
large, static array, the gate can be applied to arbitrary pairs of molecules
separated by tens of micrometres, making the scheme highly scalable. The
molecule-atom interaction can also be used for rapid qubit initialization and
efficient, non-destructive qubit readout, without driving any molecular
transitions. Single qubit gates are driven using microwave pulses alone,
exploiting the strong electric dipole transitions between rotational states.
Thus, all operations required for large scale quantum computation can be done
without moving the molecules or exciting them out of their ground electronic
states.
Related papers
- Rydberg-atom manipulation through strong interaction with free electrons [0.0]
We theoretically investigate the interaction between free electrons and individual Rydberg atoms as an approach to induce nondipolar transitions.
Our results support free electrons as powerful tools to manipulate Rydberg atoms in previously inaccessible ways.
arXiv Detail & Related papers (2024-09-27T17:00:13Z) - Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Sub-millisecond Entanglement and iSWAP Gate between Molecular Qubits [0.0]
Trapped polar molecules have been proposed as a promising quantum computing platform.
We implement a two-qubit iSWAP gate using individually trapped $X1Sigma+$ NaCs molecules.
arXiv Detail & Related papers (2024-06-21T17:56:42Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - The long mean-life-time-controlled and potentially scalable qubits
composed of electric dipolar molecules based on graphene [0.0]
We propose a new kind of qubits composed of electric dipolar molecules.
The electric dipolar molecules in an external uniform electric field will take simple harmonic oscillations.
We can perform quantum computations by manipulating the qubits of electric dipolar molecules just like those of neutral atoms.
arXiv Detail & Related papers (2021-03-11T14:42:49Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.