Learning to Modulate Random Weights: Neuromodulation-inspired Neural
Networks For Efficient Continual Learning
- URL: http://arxiv.org/abs/2204.04297v2
- Date: Mon, 9 Oct 2023 19:09:12 GMT
- Title: Learning to Modulate Random Weights: Neuromodulation-inspired Neural
Networks For Efficient Continual Learning
- Authors: Jinyung Hong and Theodore P. Pavlic
- Abstract summary: We introduce a novel neural network architecture inspired by neuromodulation in biological nervous systems.
We show that this approach has strong learning performance per task despite the very small number of learnable parameters.
- Score: 1.9580473532948401
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing Continual Learning (CL) approaches have focused on addressing
catastrophic forgetting by leveraging regularization methods, replay buffers,
and task-specific components. However, realistic CL solutions must be shaped
not only by metrics of catastrophic forgetting but also by computational
efficiency and running time. Here, we introduce a novel neural network
architecture inspired by neuromodulation in biological nervous systems to
economically and efficiently address catastrophic forgetting and provide new
avenues for interpreting learned representations. Neuromodulation is a
biological mechanism that has received limited attention in machine learning;
it dynamically controls and fine tunes synaptic dynamics in real time to track
the demands of different behavioral contexts. Inspired by this, our proposed
architecture learns a relatively small set of parameters per task context that
\emph{neuromodulates} the activity of unchanging, randomized weights that
transform the input. We show that this approach has strong learning performance
per task despite the very small number of learnable parameters. Furthermore,
because context vectors are so compact, multiple networks can be stored
concurrently with no interference and little spatial footprint, thus completely
eliminating catastrophic forgetting and accelerating the training process.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
We build a model for efficient learning sequences using only local always-on and phase-free plasticity.
We showcase the capabilities of ELiSe in a mock-up of birdsong learning, and demonstrate its flexibility with respect to parametrization.
arXiv Detail & Related papers (2024-02-26T17:30:34Z) - Activity Sparsity Complements Weight Sparsity for Efficient RNN
Inference [2.0822643340897273]
We show that activity sparsity can compose multiplicatively with parameter sparsity in a recurrent neural network model.
We achieve up to $20times$ reduction of computation while maintaining perplexities below $60$ on the Penn Treebank language modeling task.
arXiv Detail & Related papers (2023-11-13T08:18:44Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
We derive an efficient training algorithm for Leaky Integrate and Fire neurons, which is capable of training a SNN to learn complex spatial temporal patterns.
We have developed a CMOS circuit implementation for a memristor-based network of neuron and synapses which retains critical neural dynamics with reduced complexity.
arXiv Detail & Related papers (2021-04-21T18:23:31Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Brain-Inspired Learning on Neuromorphic Substrates [5.279475826661643]
This article provides a mathematical framework for the design of practical online learning algorithms for neuromorphic substrates.
Specifically, we show a direct connection between Real-Time Recurrent Learning (RTRL) and biologically plausible learning rules for training Spiking Neural Networks (SNNs)
We motivate a sparse approximation based on block-diagonal Jacobians, which reduces the algorithm's computational complexity.
arXiv Detail & Related papers (2020-10-22T17:56:59Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.