Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks
- URL: http://arxiv.org/abs/2109.09612v1
- Date: Mon, 20 Sep 2021 15:12:16 GMT
- Title: Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks
- Authors: Alexander Kovalenko, Pavel Kord\'ik, Magda Friedjungov\'a
- Abstract summary: Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small neural networks with a constrained number of trainable parameters, can
be suitable resource-efficient candidates for many simple tasks, where now
excessively large models are used. However, such models face several problems
during the learning process, mainly due to the redundancy of the individual
neurons, which results in sub-optimal accuracy or the need for additional
training steps. Here, we explore the diversity of the neurons within the hidden
layer during the learning process, and analyze how the diversity of the neurons
affects predictions of the model. As following, we introduce several techniques
to dynamically reinforce diversity between neurons during the training. These
decorrelation techniques improve learning at early stages and occasionally help
to overcome local minima faster. Additionally, we describe novel weight
initialization method to obtain decorrelated, yet stochastic weight
initialization for a fast and efficient neural network training. Decorrelated
weight initialization in our case shows about 40% relative increase in test
accuracy during the first 5 epochs.
Related papers
- Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
We explore a novel approach of progressively increasing neuron numbers in compact models during training phases.
We propose a method that reduces feature extraction biases and neuronal redundancy by introducing constraints based on neuron similarity distributions.
Results on CIFAR-10 and CIFAR-100 datasets demonstrated accuracy improvement.
arXiv Detail & Related papers (2024-08-23T11:16:37Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Bubblewrap: Online tiling and real-time flow prediction on neural
manifolds [2.624902795082451]
We propose a method that combines fast, stable dimensionality reduction with a soft tiling of the resulting neural manifold.
The resulting model can be trained at kiloHertz data rates, produces accurate approximations of neural dynamics within minutes, and generates predictions on submillisecond time scales.
arXiv Detail & Related papers (2021-08-31T16:01:45Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of
Neural Responses [9.792408261365043]
We develop a Factorized Neural Process to infer a neuron's tuning function from a small set of stimulus-response pairs.
We show on simulated responses that the predictions and reconstructed receptive fields from the Neural Process approach ground truth with increasing number of trials.
We believe this novel deep learning systems identification framework will facilitate better real-time integration of artificial neural network modeling into neuroscience experiments.
arXiv Detail & Related papers (2020-10-22T15:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.