Maxwell Matter Waves
- URL: http://arxiv.org/abs/2204.04549v1
- Date: Sat, 9 Apr 2022 21:01:00 GMT
- Title: Maxwell Matter Waves
- Authors: Dana Z. Anderson
- Abstract summary: Maxwell matter waves are coherent excitations of a single-mode of the matter-wave field.
Their quantum mechanical description is derived through the introduction of a matter vector potential.
Their apparent departure from de Broglie character is surprising.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maxwell matter waves emerge from a perspective, complementary to de
Broglie's, that matter is fundamentally a wave phenomenon whose particle
aspects are revealed by quantum mechanics. Their quantum mechanical description
is derived through the introduction of a matter vector potential, having
frequency $\omega_0$, to Schrodinger's equation for a massive particle. Maxwell
matter waves are then seen to be coherent excitations of a single-mode of the
matter-wave field. In the classical regime, their mechanics is captured by a
matter analog of Maxwell's equations for the electromagnetic field. As such,
Maxwell matter waves enable a spectrum of systems that have useful optical
analogs, such as resonant matter-wave interferometric sensors and matter-wave
parametric oscillators. These waves are associated with a wavelength that is
tied to the drive frequency $\omega_0$ rather than to the massive particle's
energy, as is ordinarily the case with de Broglie matter waves. As a result,
simple interferometric measurements lead to different outcomes for the two
types of waves. While their apparent departure from de Broglie character is
surprising, Maxwell matter waves are wholly consistent with quantum mechanics.
Related papers
- The p-Adic Schrödinger Equation and the Two-slit Experiment in Quantum Mechanics [0.0]
p-Adic quantum mechanics is constructed from the Dirac-von Neumann axioms.
The p-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature?
arXiv Detail & Related papers (2023-08-02T17:10:10Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Predicting Angular-Momentum Waves Based on Yang-Mills Equations [0.0]
Yang-Mills (YM) theory incorporates Maxwell's equations unifying electromagnetism.
The angular-momentum waves are hopefully realized in the experiments through the oscillations of spin angular momentum.
arXiv Detail & Related papers (2023-04-25T07:50:20Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Viewing quantum mechanics through the prism of electromagnetism [0.0]
We demonstrate novel relationships between quantum mechanics and the electromagnetic wave equation.
In our approach, an invariant interference-dependent electromagnetic quantity, which we call "quantum rest mass", replaces the conventional role of the inertial rest mass.
arXiv Detail & Related papers (2021-02-08T16:15:08Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Symmetry, Transactions, and the Mechanism of Wave Function Collapse [0.0]
We derive a two-atom quantum formalism describing a transaction.
We show that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair of vector potential Green's functions.
We also analyse a simplified version of the photon-splitting and Freedman-Clauser three-electron experiments.
arXiv Detail & Related papers (2020-06-19T20:43:09Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.