Enhancing wave-particle duality
- URL: http://arxiv.org/abs/2503.20077v1
- Date: Tue, 25 Mar 2025 21:25:41 GMT
- Title: Enhancing wave-particle duality
- Authors: Arwa Bukhari, Daniel Hodgson, Sara Kanzi, Robert Purdy, Almut Beige,
- Abstract summary: We quantise mechanical point particles in the same physically-motivated way as we quantise light in quantum electrodynamics.<n>In the resulting quantum theory, particles can occupy any position while moving at any velocity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although wave-particle duality is a cornerstone of quantum physics, standard approaches often treat waves and particles differently. To elevate wave-particle duality, in this paper we quantise mechanical point particles in the same physically-motivated way as we quantise light in quantum electrodynamics. In the approach we present here, instead of starting from Hamilton's equations, we consider Newton's equations of motion, which are mass-independent. In the resulting quantum theory, particles can occupy any position while moving at any velocity. Standard quantum mechanics emerges from our approach when certain semi-classical approximations are imposed.
Related papers
- Construction of Schrödinger, Pauli and Dirac equations from Vlasov equation in case of Lorentz gauge [0.0]
The authors have succeeded to construct the Schr"odinger, Pauli, Dirac equation, the Hamilton-Jacobi equation and the Maxwell equations.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantum eraser from duality--entanglement perspective [0.0]
Quantum eraser presents a counterintuitive aspect of the wave-particle duality.
We show that quantum eraser can be quantitatively understood in terms of the recently developed duality--entanglement relation.
We find that a controllable partial erasure of the which-path information is attainable.
arXiv Detail & Related papers (2021-10-24T03:56:30Z) - Hamiltonian Formulation of the Pilot-Wave Theory [0.0]
In pilot-wave theory of quantum mechanics particles have definite positions and velocities and the system evolves deterministically.
I first construct a Hamiltonian that gives Schrodinger's equation and the guidance equation for the particle.
I then find the Hamiltonian for a relativistic particle in Dirac's theory and for a quantum scalar field.
arXiv Detail & Related papers (2021-01-21T23:52:38Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Wave and particle properties can be spatially separated in a quantum
entity [0.0]
The principle of wave-particle duality has been deeply rooted in people's hearts.
In classical physics, a similar common sense is that a physical system is inseparable from its physical properties.
We find that wave and particle attributes of a quantum entity can be completely separated.
arXiv Detail & Related papers (2020-09-01T16:23:46Z) - A mechanical analog of quantum bradyons and tachyons [0.0]
We present an analog of a quantum wave-particle duality: a vibrating string threaded through a freely moving bead or masslet'
For small string amplitudes, the particle movement is governed by a set of non-linear dynamical equations.
Subsonic and supersonic particles can fall into a quantum regime as with the slower-than-light bradyons and hypothetical, faster-than-light tachyons of particle physics.
arXiv Detail & Related papers (2020-02-19T12:56:52Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.