On Principal Curve-Based Classifiers and Similarity-Based Selective
Sampling in Time-Series
- URL: http://arxiv.org/abs/2204.04620v1
- Date: Sun, 10 Apr 2022 07:28:18 GMT
- Title: On Principal Curve-Based Classifiers and Similarity-Based Selective
Sampling in Time-Series
- Authors: Aref Hakimzadeh, Koorush Ziarati, Mohammad Taheri
- Abstract summary: This paper proposes a deterministic selective sampling algorithm with the same computational steps, both by use of principal curve as their building block in model definition.
Considering the labeling costs and problems in online monitoring devices, there should be an algorithm that finds the data points which knowing their labels will cause in better performance of the classifier.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considering the concept of time-dilation, there exist some major issues with
recurrent neural Architectures. Any variation in time spans between input data
points causes performance attenuation in recurrent neural network
architectures. Principal curve-based classifiers have the ability of handling
any kind of variation in time spans. In other words, principal curve-based
classifiers preserve the relativity of time while neural network architecture
violates this property of time. On the other hand, considering the labeling
costs and problems in online monitoring devices, there should be an algorithm
that finds the data points which knowing their labels will cause in better
performance of the classifier. Current selective sampling algorithms have lack
of reliability due to the randomness of the proposed algorithms. This paper
proposes a classifier and also a deterministic selective sampling algorithm
with the same computational steps, both by use of principal curve as their
building block in model definition.
Related papers
- Online Nonparametric Supervised Learning for Massive Data [0.0]
We develop a fast algorithm adapted to the real-time calculation of the nonparametric classifier in massive as well as streaming data frameworks.
The proposed methods are evaluated and compared to some commonly used machine learning algorithms for real-time fetal well-being monitoring.
arXiv Detail & Related papers (2024-05-29T20:04:23Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Identifying Unique Causal Network from Nonstationary Time Series [15.204794081719097]
A novel causation model named Unique Causal Network (UCN) is proposed in this paper.
UCN considers the influence of time delay, and proves the uniqueness of obtained network structure.
A higher-order causal entropy (HCE) algorithm is designed to identify the structure of UCN in a distributed way.
arXiv Detail & Related papers (2022-11-18T08:28:54Z) - Autoencoder Based Iterative Modeling and Multivariate Time-Series
Subsequence Clustering Algorithm [0.0]
This paper introduces an algorithm for the detection of change-points and the identification of the corresponding subsequences in transient time-series data (MTSD)
We use a recurrent neural network (RNN) based Autoencoder (AE) which is iteratively trained on incoming data.
A model of the identified subsequence is saved and used for recognition of repeating subsequences as well as fast offline clustering.
arXiv Detail & Related papers (2022-09-09T09:59:56Z) - TimeREISE: Time-series Randomized Evolving Input Sample Explanation [5.557646286040063]
TimeREISE is a model attribution method specifically aligned to success in the context of time series classification.
The method shows superior performance compared to existing approaches concerning different well-established measurements.
arXiv Detail & Related papers (2022-02-16T09:40:13Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
We propose a methodology based on deep metric learning to address the need for automated post-hoc cleaning and robust separation filters.
We validate this method with an artificially corrupted label set based on source-separated high-density surface electromyography recordings.
This approach enables a neural network to learn to accurately decode neurophysiological time series using any imperfect method of labelling the signal.
arXiv Detail & Related papers (2021-10-13T21:51:56Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
We propose new time series classification algorithms to address gaps in current approaches.
Our approach is based on symbolic representations of time series, efficient sequence mining algorithms and linear classification models.
Our models are as accurate as deep learning models but are more efficient regarding running time and memory, can work with variable-length time series and can be interpreted by highlighting the discriminative symbolic features on the original time series.
arXiv Detail & Related papers (2020-05-31T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.