"That Is a Suspicious Reaction!": Interpreting Logits Variation to
Detect NLP Adversarial Attacks
- URL: http://arxiv.org/abs/2204.04636v2
- Date: Thu, 29 Jun 2023 13:02:28 GMT
- Title: "That Is a Suspicious Reaction!": Interpreting Logits Variation to
Detect NLP Adversarial Attacks
- Authors: Edoardo Mosca and Shreyash Agarwal and Javier Rando and Georg Groh
- Abstract summary: Adversarial attacks are a major challenge faced by current machine learning research.
Our work presents a model-agnostic detector of adversarial text examples.
- Score: 0.2999888908665659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks are a major challenge faced by current machine learning
research. These purposely crafted inputs fool even the most advanced models,
precluding their deployment in safety-critical applications. Extensive research
in computer vision has been carried to develop reliable defense strategies.
However, the same issue remains less explored in natural language processing.
Our work presents a model-agnostic detector of adversarial text examples. The
approach identifies patterns in the logits of the target classifier when
perturbing the input text. The proposed detector improves the current
state-of-the-art performance in recognizing adversarial inputs and exhibits
strong generalization capabilities across different NLP models, datasets, and
word-level attacks.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
We propose a framework for a broader class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade detection.
We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic scenarios to assess the potential enhancement of the current detection model's robustness.
The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading to the misclassification of machine-generated text as human-written content.
arXiv Detail & Related papers (2024-04-02T12:49:22Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - ParaFuzz: An Interpretability-Driven Technique for Detecting Poisoned
Samples in NLP [29.375957205348115]
We propose an innovative test-time poisoned sample detection framework that hinges on the interpretability of model predictions.
We employ ChatGPT, a state-of-the-art large language model, as our paraphraser and formulate the trigger-removal task as a prompt engineering problem.
arXiv Detail & Related papers (2023-08-04T03:48:28Z) - TextShield: Beyond Successfully Detecting Adversarial Sentences in Text
Classification [6.781100829062443]
Adversarial attack serves as a major challenge for neural network models in NLP, which precludes the model's deployment in safety-critical applications.
Previous detection methods are incapable of giving correct predictions on adversarial sentences.
We propose a saliency-based detector, which can effectively detect whether an input sentence is adversarial or not.
arXiv Detail & Related papers (2023-02-03T22:58:07Z) - Residue-Based Natural Language Adversarial Attack Detection [1.4213973379473654]
This work proposes a simple sentence-embedding "residue" based detector to identify adversarial examples.
On many tasks, it out-performs ported image domain detectors and recent state of the art NLP specific detectors.
arXiv Detail & Related papers (2022-04-17T17:47:47Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
We consider a rarely investigated but more rigorous setting, namely hard-label attack, in which the attacker could only access the prediction label.
Based on this observation, we propose a novel hard-label attack, called Learning-based Hybrid Local Search (LHLS) algorithm.
Our LHLS significantly outperforms existing hard-label attacks regarding the attack performance as well as adversary quality.
arXiv Detail & Related papers (2022-01-20T14:16:07Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
We show that existing novelty detectors are susceptible to adversarial examples.
We propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples.
arXiv Detail & Related papers (2021-08-25T10:41:29Z) - Exploiting Multi-Object Relationships for Detecting Adversarial Attacks
in Complex Scenes [51.65308857232767]
Vision systems that deploy Deep Neural Networks (DNNs) are known to be vulnerable to adversarial examples.
Recent research has shown that checking the intrinsic consistencies in the input data is a promising way to detect adversarial attacks.
We develop a novel approach to perform context consistency checks using language models.
arXiv Detail & Related papers (2021-08-19T00:52:10Z) - Universal Adversarial Attacks with Natural Triggers for Text
Classification [30.74579821832117]
We develop adversarial attacks that appear closer to natural English phrases and yet confuse classification systems.
Our attacks effectively reduce model accuracy on classification tasks while being less identifiable than prior models.
arXiv Detail & Related papers (2020-05-01T01:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.