TextShield: Beyond Successfully Detecting Adversarial Sentences in Text
Classification
- URL: http://arxiv.org/abs/2302.02023v1
- Date: Fri, 3 Feb 2023 22:58:07 GMT
- Title: TextShield: Beyond Successfully Detecting Adversarial Sentences in Text
Classification
- Authors: Lingfeng Shen, Ze Zhang, Haiyun Jiang, Ying Chen
- Abstract summary: Adversarial attack serves as a major challenge for neural network models in NLP, which precludes the model's deployment in safety-critical applications.
Previous detection methods are incapable of giving correct predictions on adversarial sentences.
We propose a saliency-based detector, which can effectively detect whether an input sentence is adversarial or not.
- Score: 6.781100829062443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attack serves as a major challenge for neural network models in
NLP, which precludes the model's deployment in safety-critical applications. A
recent line of work, detection-based defense, aims to distinguish adversarial
sentences from benign ones. However, {the core limitation of previous detection
methods is being incapable of giving correct predictions on adversarial
sentences unlike defense methods from other paradigms.} To solve this issue,
this paper proposes TextShield: (1) we discover a link between text attack and
saliency information, and then we propose a saliency-based detector, which can
effectively detect whether an input sentence is adversarial or not. (2) We
design a saliency-based corrector, which converts the detected adversary
sentences to benign ones. By combining the saliency-based detector and
corrector, TextShield extends the detection-only paradigm to a
detection-correction paradigm, thus filling the gap in the existing
detection-based defense. Comprehensive experiments show that (a) TextShield
consistently achieves higher or comparable performance than state-of-the-art
defense methods across various attacks on different benchmarks. (b) our
saliency-based detector outperforms existing detectors for detecting
adversarial sentences.
Related papers
- Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
We propose a framework for a broader class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade detection.
We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic scenarios to assess the potential enhancement of the current detection model's robustness.
The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading to the misclassification of machine-generated text as human-written content.
arXiv Detail & Related papers (2024-04-02T12:49:22Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - Verifying the Robustness of Automatic Credibility Assessment [79.08422736721764]
Text classification methods have been widely investigated as a way to detect content of low credibility.
In some cases insignificant changes in input text can mislead the models.
We introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - "That Is a Suspicious Reaction!": Interpreting Logits Variation to
Detect NLP Adversarial Attacks [0.2999888908665659]
Adversarial attacks are a major challenge faced by current machine learning research.
Our work presents a model-agnostic detector of adversarial text examples.
arXiv Detail & Related papers (2022-04-10T09:24:41Z) - ADC: Adversarial attacks against object Detection that evade Context
consistency checks [55.8459119462263]
We show that even context consistency checks can be brittle to properly crafted adversarial examples.
We propose an adaptive framework to generate examples that subvert such defenses.
Our results suggest that how to robustly model context and check its consistency, is still an open problem.
arXiv Detail & Related papers (2021-10-24T00:25:09Z) - Randomized Substitution and Vote for Textual Adversarial Example
Detection [6.664295299367366]
A line of work has shown that natural text processing models are vulnerable to adversarial examples.
We propose a novel textual adversarial example detection method, termed Randomized Substitution and Vote (RS&V)
Empirical evaluations on three benchmark datasets demonstrate that RS&V could detect the textual adversarial examples more successfully than the existing detection methods.
arXiv Detail & Related papers (2021-09-13T04:17:58Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
We show that existing novelty detectors are susceptible to adversarial examples.
We propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples.
arXiv Detail & Related papers (2021-08-25T10:41:29Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.