論文の概要: Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations
- arxiv url: http://arxiv.org/abs/2204.04783v1
- Date: Sun, 10 Apr 2022 22:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 07:43:11.006454
- Title: Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations
- Title(参考訳): 低ランクおよびモデル非依存表現を用いた時間知識グラフ推論
- Authors: Ioannis Dikeoulias, Saadullah Amin, G\"unter Neumann
- Abstract要約: 低ランクテンソル分解モデル LowFER のパラメータ効率および時間認識拡張系である Time-LowFER を導入する。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴に対するサイクル対応の時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
- 参考スコア(独自算出の注目度): 1.8262547855491458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal knowledge graph completion (TKGC) has become a popular approach for
reasoning over the event and temporal knowledge graphs, targeting the
completion of knowledge with accurate but missing information. In this context,
tensor decomposition has successfully modeled interactions between entities and
relations. Their effectiveness in static knowledge graph completion motivates
us to introduce Time-LowFER, a family of parameter-efficient and time-aware
extensions of the low-rank tensor factorization model LowFER. Noting several
limitations in current approaches to represent time, we propose a cycle-aware
time-encoding scheme for time features, which is model-agnostic and offers a
more generalized representation of time. We implement our methods in a unified
temporal knowledge graph embedding framework, focusing on time-sensitive data
processing. The experiments show that our proposed methods perform on par or
better than the state-of-the-art semantic matching models on two benchmarks.
- Abstract(参考訳): 時間的知識グラフ補完(TKGC)は、正確だが欠落した情報による知識の完成をターゲットとして、事象や時間的知識グラフを推論する一般的なアプローチとなっている。
この文脈でテンソル分解は、実体と関係の間の相互作用をうまくモデル化した。
静的知識グラフ補完の有効性は,低ランクテンソル分解モデルlowferのパラメータ効率と時間対応拡張であるtime-lowferの導入を動機付ける。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴のサイクル認識型時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
実験の結果,提案手法は2つのベンチマークにおいて最先端のセマンティクスマッチングモデルと同等以上の性能を示した。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Learning Time-aware Graph Structures for Spatially Correlated Time
Series Forecasting [30.93275270960829]
本稿では時系列間の時間認識相関を抽出する時間認識グラフ構造学習(TagSL)を提案する。
グラフ畳み込みに基づくGated Recurrent Unit (GCGRU) も提案する。
最後に,TagSLとGCGRUを組み合わせたTGCRN(Time-aware Graph Convolutional Recurrent Network)という統合フレームワークを導入し,マルチステップ時間予測のためのエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-27T04:23:43Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
TNTComplExのような単純な手法は、最先端の手法よりもはるかに正確な結果が得られることを示す。
また,2つの時間的リンク予測モデルに対する幅広い時間的平滑化正規化の影響についても検討した。
論文 参考訳(メタデータ) (2023-09-16T16:52:49Z) - TimeTuner: Diagnosing Time Representations for Time-Series Forecasting
with Counterfactual Explanations [3.8357850372472915]
本稿では,モデル行動が局所化,定常性,時系列表現の相関とどのように関連しているかをアナリストが理解するために,新しいビジュアル分析フレームワークであるTimeTunerを提案する。
TimeTunerは時系列表現を特徴付けるのに役立ち、機能エンジニアリングのプロセスを導くのに役立ちます。
論文 参考訳(メタデータ) (2023-07-19T11:40:15Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
本稿では,短期的特徴と長期的特徴の両方を捉えるのに役立つフレームレベルタイムラインモデリング(FTM)手法を提案する。
我々の手法は、ほとんどの時間的GNNで簡単に組み立てることができる。
論文 参考訳(メタデータ) (2023-02-23T06:53:16Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Leveraging Static Models for Link Prediction in Temporal Knowledge
Graphs [0.0]
我々は,時空間KGEにおいて,SpliMeが現在の最先端技術と競合するか,あるいは競争していることを示す。
時間グラフ上で静的モデルの性能を評価するために現在使われている手順の問題点を明らかにする。
論文 参考訳(メタデータ) (2021-06-29T10:15:17Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
本研究では,動画内の時間依存性を利用して,TCGL (temporal Contrastive Graph Learning) という新たな自己監督手法を提案する。
TCGLは、スニペット間およびスニペット内時間依存性を時間表現学習のための自己監督信号として共同で評価するハイブリッドグラフコントラスト学習戦略をルーツとしています。
実験結果は、大規模アクション認識およびビデオ検索ベンチマークにおける最先端の方法よりも、TCGLの優位性を示しています。
論文 参考訳(メタデータ) (2021-01-04T08:11:39Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z) - Time-aware Graph Embedding: A temporal smoothness and task-oriented
approach [9.669206664225234]
本稿では,時間的滑らかさを取り入れたロバストな時間認識グラフ埋め込み(RTGE)手法を提案する。
まず、RTGEは時間認識グラフ埋め込みの学習過程における時間的滑らかさの尺度を統合する。
第2に、RTGEは時間的情報に関連する一般的なタスク指向のネガティブサンプリング戦略を提供する。
論文 参考訳(メタデータ) (2020-07-22T02:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。