Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations
- URL: http://arxiv.org/abs/2204.04783v1
- Date: Sun, 10 Apr 2022 22:24:11 GMT
- Title: Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations
- Authors: Ioannis Dikeoulias, Saadullah Amin, G\"unter Neumann
- Abstract summary: We introduce Time-LowFER, a family of parameter-efficient and time-aware extensions of the low-rank tensor factorization model LowFER.
Noting several limitations in current approaches to represent time, we propose a cycle-aware time-encoding scheme for time features.
We implement our methods in a unified temporal knowledge graph embedding framework, focusing on time-sensitive data processing.
- Score: 1.8262547855491458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal knowledge graph completion (TKGC) has become a popular approach for
reasoning over the event and temporal knowledge graphs, targeting the
completion of knowledge with accurate but missing information. In this context,
tensor decomposition has successfully modeled interactions between entities and
relations. Their effectiveness in static knowledge graph completion motivates
us to introduce Time-LowFER, a family of parameter-efficient and time-aware
extensions of the low-rank tensor factorization model LowFER. Noting several
limitations in current approaches to represent time, we propose a cycle-aware
time-encoding scheme for time features, which is model-agnostic and offers a
more generalized representation of time. We implement our methods in a unified
temporal knowledge graph embedding framework, focusing on time-sensitive data
processing. The experiments show that our proposed methods perform on par or
better than the state-of-the-art semantic matching models on two benchmarks.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Learning Time-aware Graph Structures for Spatially Correlated Time
Series Forecasting [30.93275270960829]
We propose Time-aware Graph Structure Learning (TagSL), which extracts time-aware correlations among time series.
We also present a Graph Convolution-based Gated Recurrent Unit (GCGRU), that jointly captures spatial and temporal dependencies.
Finally, we introduce a unified framework named Time-aware Graph Convolutional Recurrent Network (TGCRN), combining TagSL, GCGRU in an encoder-decoder architecture for multi-step-temporal forecasting.
arXiv Detail & Related papers (2023-12-27T04:23:43Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
We show that a simple method like TNTComplEx can produce significantly more accurate results than state-of-the-art methods.
We also evaluate the impact of a wide range of temporal smoothing regularisers on two state-of-the-art temporal link prediction models.
arXiv Detail & Related papers (2023-09-16T16:52:49Z) - TimeTuner: Diagnosing Time Representations for Time-Series Forecasting
with Counterfactual Explanations [3.8357850372472915]
This paper contributes a novel visual analytics framework, namely TimeTuner, to help analysts understand how model behaviors are associated with localized, stationarity, and correlations of time-series representations.
We show that TimeTuner can help characterize time-series representations and guide the feature engineering processes.
arXiv Detail & Related papers (2023-07-19T11:40:15Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
We propose a Frame-level Timeline Modeling (FTM) method that helps to capture both short-term and long-term features.
Our method can be easily assembled with most temporal GNNs.
arXiv Detail & Related papers (2023-02-23T06:53:16Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Leveraging Static Models for Link Prediction in Temporal Knowledge
Graphs [0.0]
We show that SpliMe competes with or outperforms the current state of the art in temporal KGE.
We uncover issues with the procedure currently used to assess the performance of static models on temporal graphs.
arXiv Detail & Related papers (2021-06-29T10:15:17Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
This work takes advantage of the temporal dependencies within videos and proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL)
Our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning.
Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
arXiv Detail & Related papers (2021-01-04T08:11:39Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
We propose a one-shot learning framework for link prediction in temporal knowledge graphs.
Our proposed method employs a self-attention mechanism to effectively encode temporal interactions between entities.
Our experiments show that the proposed algorithm outperforms the state of the art baselines for two well-studied benchmarks.
arXiv Detail & Related papers (2020-10-23T03:24:44Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
arXiv Detail & Related papers (2020-09-21T16:48:29Z) - Time-aware Graph Embedding: A temporal smoothness and task-oriented
approach [9.669206664225234]
This paper presents a Robustly Time-aware Graph Embedding (RTGE) method by incorporating temporal smoothness.
At first, RTGE integrates a measure of temporal smoothness in the learning process of the time-aware graph embedding.
Secondly, RTGE provides a general task-oriented negative sampling strategy associated with temporally-aware information.
arXiv Detail & Related papers (2020-07-22T02:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.