From Static to Dynamic Node Embeddings
- URL: http://arxiv.org/abs/2009.10017v1
- Date: Mon, 21 Sep 2020 16:48:29 GMT
- Title: From Static to Dynamic Node Embeddings
- Authors: Di Jin, Sungchul Kim, Ryan A. Rossi, Danai Koutra
- Abstract summary: We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
- Score: 61.58641072424504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a general framework for leveraging graph stream data for
temporal prediction-based applications. Our proposed framework includes novel
methods for learning an appropriate graph time-series representation, modeling
and weighting the temporal dependencies, and generalizing existing embedding
methods for such data. While previous work on dynamic modeling and embedding
has focused on representing a stream of timestamped edges using a time-series
of graphs based on a specific time-scale (e.g., 1 month), we propose the notion
of an $\epsilon$-graph time-series that uses a fixed number of edges for each
graph, and show its superiority over the time-scale representation used in
previous work. In addition, we propose a number of new temporal models based on
the notion of temporal reachability graphs and weighted temporal summary
graphs. These temporal models are then used to generalize existing base
(static) embedding methods by enabling them to incorporate and appropriately
model temporal dependencies in the data. From the 6 temporal network models
investigated (for each of the 7 base embedding methods), we find that the top-3
temporal models are always those that leverage the new $\epsilon$-graph
time-series representation. Furthermore, the dynamic embedding methods from the
framework almost always achieve better predictive performance than existing
state-of-the-art dynamic node embedding methods that are developed specifically
for such temporal prediction tasks. Finally, the findings of this work are
useful for designing better dynamic embedding methods.
Related papers
- Graph Neural Alchemist: An innovative fully modular architecture for time series-to-graph classification [0.0]
This paper introduces a novel Graph Neural Network (GNN) architecture for time series classification.
By representing time series as visibility graphs, it is possible to encode both temporal dependencies inherent to time series data.
Our architecture is fully modular, enabling flexible experimentation with different models.
arXiv Detail & Related papers (2024-10-12T00:03:40Z) - TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis [3.5707423185282656]
This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain.
We evaluate our approach on multiple datasets from the traffic, energy, and health sectors involvingtemporal data.
arXiv Detail & Related papers (2024-08-29T09:54:46Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
We propose a Frame-level Timeline Modeling (FTM) method that helps to capture both short-term and long-term features.
Our method can be easily assembled with most temporal GNNs.
arXiv Detail & Related papers (2023-02-23T06:53:16Z) - Taming Local Effects in Graph-based Spatiotemporal Forecasting [28.30604130617646]
Stemporal graph neural networks have shown to be effective in time series forecasting applications.
This paper aims to understand the interplay between globality and locality in graph-basedtemporal forecasting.
We propose a methodological framework to rationalize the practice of including trainable node embeddings in such architectures.
arXiv Detail & Related papers (2023-02-08T14:18:56Z) - Time-aware Hyperbolic Graph Attention Network for Session-based
Recommendation [58.748215444851226]
Session-based Recommendation (SBR) is to predict users' next interested items based on their previous browsing sessions.
We propose Time-aware Hyperbolic Graph Attention Network (TA-HGAT) to build a session-based recommendation model considering temporal information.
arXiv Detail & Related papers (2023-01-10T04:16:09Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Scalable Motif Counting for Large-scale Temporal Graphs [25.90869257290865]
We propose a scalable parallel framework for exactly counting temporal motifs in large-scale temporal graphs.
Based on the proposed counting algorithms, we design a hierarchical parallel framework that features both inter- and intra-node parallel strategies.
Experiments on sixteen real-world temporal graph datasets demonstrate the superiority and capability of our proposed framework.
arXiv Detail & Related papers (2022-04-20T05:41:38Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
We introduce Time-LowFER, a family of parameter-efficient and time-aware extensions of the low-rank tensor factorization model LowFER.
Noting several limitations in current approaches to represent time, we propose a cycle-aware time-encoding scheme for time features.
We implement our methods in a unified temporal knowledge graph embedding framework, focusing on time-sensitive data processing.
arXiv Detail & Related papers (2022-04-10T22:24:11Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.