論文の概要: Semantic Segmentation for Point Cloud Scenes via Dilated Graph Feature
Aggregation and Pyramid Decoders
- arxiv url: http://arxiv.org/abs/2204.04944v1
- Date: Mon, 11 Apr 2022 08:41:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 16:53:05.197219
- Title: Semantic Segmentation for Point Cloud Scenes via Dilated Graph Feature
Aggregation and Pyramid Decoders
- Title(参考訳): 拡張グラフ特徴集合とピラミッドデコーダによるポイントクラウドシーンの意味セグメンテーション
- Authors: Yongqiang Mao, Xian Sun, Wenhui Diao, Kaiqiang Chen, Zonghao Guo,
Xiaonan Lu, Kun Fu
- Abstract要約: 拡張グラフ特徴集合(DGFA)をルーツとするグラフ畳み込みネットワークDGFA-Netを提案する。
S3DIS、ShapeNetPart、Tronto-3Dの実験は、DGFA-Netがベースラインアプローチよりも優れていることを示している。
- 参考スコア(独自算出の注目度): 15.860648472852597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of point clouds generates comprehensive understanding
of scenes through densely predicting the category for each point. Due to the
unicity of receptive field, semantic segmentation of point clouds remains
challenging for the expression of multi-receptive field features, which brings
about the misclassification of instances with similar spatial structures. In
this paper, we propose a graph convolutional network DGFA-Net rooted in dilated
graph feature aggregation (DGFA), guided by multi-basis aggregation loss
(MALoss) calculated through Pyramid Decoders. To configure multi-receptive
field features, DGFA which takes the proposed dilated graph convolution
(DGConv) as its basic building block, is designed to aggregate multi-scale
feature representation by capturing dilated graphs with various receptive
regions. By simultaneously considering penalizing the receptive field
information with point sets of different resolutions as calculation bases, we
introduce Pyramid Decoders driven by MALoss for the diversity of receptive
field bases. Combining these two aspects, DGFA-Net significantly improves the
segmentation performance of instances with similar spatial structures.
Experiments on S3DIS, ShapeNetPart and Toronto-3D show that DGFA-Net
outperforms the baseline approach, achieving a new state-of-the-art
segmentation performance.
- Abstract(参考訳): 点雲のセマンティックセグメンテーションは、各点のカテゴリを密に予測することで、シーンの包括的理解を生成する。
レセプティブ・フィールドのユニシティのため、ポイント・クラウドのセグメンテーションは、類似した空間構造を持つインスタンスの誤分類をもたらすマルチ・レセプティブ・フィールドの特徴を表現するのに依然として困難である。
本稿では,拡張グラフ特徴集合(DGFA)をルーツとするグラフ畳み込みネットワークDGFA-Netを提案する。
提案する拡張グラフ畳み込み (DGConv) を基本構成ブロックとし, 様々な受容領域を持つ拡張グラフをキャプチャして, マルチスケールの特徴表現を集約するDGFAを設計した。
異なる解像度の点集合を計算ベースとして受容野情報をペナルティ化することを同時に検討することにより,MALossで駆動されるピラミッドデコーダを受容野の多様性のために導入する。
これら2つの側面を組み合わせることで、DGFA-Netは類似した空間構造を持つインスタンスのセグメンテーション性能を大幅に改善する。
S3DIS、ShapeNetPart、Tronto-3Dの実験では、DGFA-Netはベースラインアプローチよりも優れており、新しい最先端セグメンテーション性能を実現している。
関連論文リスト
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graphはオープンな3Dシーン理解のための新しいシーン表現である。
セマンティクスを記憶し、その形状に応じてオブジェクトの占有度を調節するアダプティブ・オクツリー構造を開発する。
論文 参考訳(メタデータ) (2024-11-25T10:14:10Z) - PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model [77.00221501105788]
ドメイン一般化(DG)は、最近、ポイントクラウド分類(PCC)モデルの、目に見えない領域への一般化性を改善するために研究されている。
本稿では、DG PCCにおける状態空間モデル(SSM)の一般化可能性について研究する。
本稿では,未知の領域に対して強い一般化性を持つ新しいフレームワークであるPointDGMambaを提案する。
論文 参考訳(メタデータ) (2024-08-24T12:53:48Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
我々は3次元シーンを表すニューラル・レージアンス・フィールド(NeRF)内の新しい特徴場を学習する。
本手法は、ビュー一貫性の多粒性2Dセグメンテーションを入力とし、3D一貫性のセグメンテーションの階層構造を出力として生成する。
提案手法と,多視点画像と多粒性セグメンテーションを用いた合成データセットのベースラインの評価を行い,精度と視点整合性を向上したことを示す。
論文 参考訳(メタデータ) (2024-05-30T04:14:58Z) - Deep Semantic Graph Matching for Large-scale Outdoor Point Clouds
Registration [22.308070598885532]
我々は、ポイントクラウド登録問題をセマンティックインスタンスマッチングと登録タスクとして扱う。
大規模屋外クラウド登録のためのディープセマンティックグラフマッチング法(DeepSGM)を提案する。
KITTIオドメトリデータセットで行った実験結果から,提案手法が登録性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-08-10T03:07:28Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
本稿では,異なるビュー間の幾何対応性を検討するための幾何フローネットワーク (GFNet) を提案する。
具体的には、異なる視点にまたがって補完情報を双方向に整列し、伝播する新しい幾何フローモジュール(GFM)を考案する。
論文 参考訳(メタデータ) (2022-07-06T11:48:08Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
DPFA-Net(Dynamic Point Feature Aggregation Network)と呼ばれる新しい3Dポイント・クラウド・ラーニング・ネットワークを提案する。
DPFA-Netにはセマンティックセグメンテーションと3Dポイントクラウドの分類のための2つのバリエーションがある。
S3DISデータセットのセマンティックセグメンテーションのための、最先端の全体的な精度スコアを達成する。
論文 参考訳(メタデータ) (2021-11-14T05:46:05Z) - Investigate Indistinguishable Points in Semantic Segmentation of 3D
Point Cloud [34.414363402029984]
区別不能な点は、複雑な境界に位置する点と、類似した局所的なテクスチャを持つ点と、小さな硬い領域を分離する点からなる。
階層的セマンティック特徴を利用して,識別不能な点を適応的に選択する,識別不能な領域フォカライゼーションネットワーク(IAF-Net)を提案する。
IAF-Netは、いくつかの人気の3Dポイントクラウドデータセットで最先端のパフォーマンスで同等の結果を達成します。
論文 参考訳(メタデータ) (2021-03-18T15:54:59Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
そこで我々はPIG-Netと呼ばれるインセプションに基づくディープネットワークアーキテクチャを提案し,点雲の局所的および大域的幾何学的詳細を効果的に特徴付ける。
我々は2つの最先端データセット上でPIG-Netアーキテクチャの徹底的な実験的解析を行う。
論文 参考訳(メタデータ) (2021-01-28T13:27:55Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
3Dセグメンテーションラベルの欠如は、効率的な点雲セグメンテーションの主な障害の1つである。
本稿では,2D のみを監督する点群における大規模セマンティックシーンセグメンテーションのための,新しいディープグラフ畳み込みネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-26T23:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。