Assessing the communication gap between AI models and healthcare
professionals: explainability, utility and trust in AI-driven clinical
decision-making
- URL: http://arxiv.org/abs/2204.05030v2
- Date: Wed, 13 Apr 2022 19:49:46 GMT
- Title: Assessing the communication gap between AI models and healthcare
professionals: explainability, utility and trust in AI-driven clinical
decision-making
- Authors: Oskar Wysocki, Jessica Katharine Davies, Markel Vigo, Anne Caroline
Armstrong, D\'onal Landers, Rebecca Lee and Andr\'e Freitas
- Abstract summary: This paper contributes with a pragmatic evaluation framework for explainable Machine Learning (ML) models for clinical decision support.
The study revealed a more nuanced role for ML explanation models, when these are pragmatically embedded in the clinical context.
- Score: 1.7809957179929814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper contributes with a pragmatic evaluation framework for explainable
Machine Learning (ML) models for clinical decision support. The study revealed
a more nuanced role for ML explanation models, when these are pragmatically
embedded in the clinical context. Despite the general positive attitude of
healthcare professionals (HCPs) towards explanations as a safety and trust
mechanism, for a significant set of participants there were negative effects
associated with confirmation bias, accentuating model over-reliance and
increased effort to interact with the model. Also, contradicting one of its
main intended functions, standard explanatory models showed limited ability to
support a critical understanding of the limitations of the model. However, we
found new significant positive effects which repositions the role of
explanations within a clinical context: these include reduction of automation
bias, addressing ambiguous clinical cases (cases where HCPs were not certain
about their decision) and support of less experienced HCPs in the acquisition
of new domain knowledge.
Related papers
- Methodological Explainability Evaluation of an Interpretable Deep Learning Model for Post-Hepatectomy Liver Failure Prediction Incorporating Counterfactual Explanations and Layerwise Relevance Propagation: A Prospective In Silico Trial [13.171582596404313]
We developed a variational autoencoder-multilayer perceptron (VAE-MLP) model for preoperative PHLF prediction.
This model integrated counterfactuals and layerwise relevance propagation (LRP) to provide insights into its decision-making mechanism.
Results from the three-track in silico clinical trial showed that clinicians' prediction accuracy and confidence increased when AI explanations were provided.
arXiv Detail & Related papers (2024-08-07T13:47:32Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
Review of progress in developing explainable models for clinical risk prediction.
emphasizes the need for external validation and the combination of diverse interpretability methods.
End-to-end approach to explainability in clinical risk prediction is essential for success.
arXiv Detail & Related papers (2023-08-16T14:51:51Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Context-dependent Explainability and Contestability for Trustworthy
Medical Artificial Intelligence: Misclassification Identification of
Morbidity Recognition Models in Preterm Infants [0.0]
Explainable AI (XAI) aims to address this requirement by clarifying AI reasoning to support the end users.
We built our methodology on three main pillars: decomposing the feature set by leveraging clinical context latent space, assessing the clinical association of global explanations, and Latent Space Similarity (LSS) based local explanations.
arXiv Detail & Related papers (2022-12-17T07:59:09Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning [31.97813934144506]
We introduce a new representation learning framework, which considers the provision of counterfactual explanations as an embedded property of the risk model.
Our results suggest that our proposed framework has the potential to help researchers and clinicians improve personalised care.
arXiv Detail & Related papers (2022-05-15T09:41:16Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.