論文の概要: ReservoirComputing.jl: An Efficient and Modular Library for Reservoir
Computing Models
- arxiv url: http://arxiv.org/abs/2204.05117v1
- Date: Fri, 8 Apr 2022 13:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-16 11:25:57.975683
- Title: ReservoirComputing.jl: An Efficient and Modular Library for Reservoir
Computing Models
- Title(参考訳): reservoircomputing.jl: 貯留層計算モデルのための効率的でモジュラーなライブラリ
- Authors: Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, Miguel D.
Mahecha and Karin Mora
- Abstract要約: ReservoirComputing.jlは、貯水池コンピューティングモデルのためのオープンソースのJuliaライブラリである。
コードとドキュメントは、MITライセンス下でGithubにホストされている。
- 参考スコア(独自算出の注目度): 0.17499351967216337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ReservoirComputing.jl, an open source Julia library for
reservoir computing models. The software offers a great number of algorithms
presented in the literature, and allows to expand on them with both internal
and external tools in a simple way. The implementation is highly modular, fast
and comes with a comprehensive documentation, which includes reproduced
experiments from literature. The code and documentation are hosted on Github
under an MIT license https://github.com/SciML/ReservoirComputing.jl.
- Abstract(参考訳): ReservoirComputing.jlは、貯水池計算モデルのためのオープンソースのJuliaライブラリである。
このソフトウェアは、文献で提示された膨大な数のアルゴリズムを提供し、内部ツールと外部ツールの両方で簡単に拡張することができる。
実装は非常にモジュール化され、高速で、文献から再現された実験を含む包括的なドキュメントが付属している。
コードとドキュメントはMITライセンスのhttps://github.com/SciML/ReservoirComputing.jlでGithubにホストされている。
関連論文リスト
- ml_edm package: a Python toolkit for Machine Learning based Early Decision Making [0.43363943304569713]
textttml_edmは、時間/シーケンスデータを含む学習タスクの早期決定のために設計されたPython 3ライブラリである。
textttscikit-learnは、textttml_edmと互換性のある推定器とパイプラインを作成する。
論文 参考訳(メタデータ) (2024-08-23T09:08:17Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$は、さまざまなPyTorchモジュールに対するカスタマイズ可能な介入をサポートするオープンソースライブラリである。
私たちは、$textbfpyvene$が、ニューラルモデルへの介入を実行し、他のモデルとインターバルされたモデルを共有するための統一されたフレームワークを提供する方法を示します。
論文 参考訳(メタデータ) (2024-03-12T16:46:54Z) - FuzzyLogic.jl: a Flexible Library for Efficient and Productive Fuzzy
Inference [5.584060970507507]
本稿では,ファジィ推論を行うJuliaライブラリであるtextscFuzzyLogic.jlを紹介する。
ライブラリは完全にオープンソースで、パーミッシブライセンスでリリースされている。
論文 参考訳(メタデータ) (2023-06-17T10:43:09Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfnはPyTorchライブラリで、このニーズに対処することを目指している。
環境のためのシンプルなAPIと、サンプルと損失のための有用な抽象化を提供する。
論文 参考訳(メタデータ) (2023-05-24T00:20:59Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeLは継続学習のためのライブラリで、PyTorchとJAXフレームワークの両方をサポートする。
それは、正規化ベースのアプローチ、リプレイベースのアプローチ、ハイブリッドアプローチを含む、幅広い連続学習アルゴリズムのための統一インターフェースを提供する。
私たちはSequeLをオープンソースライブラリとしてリリースし、研究者や開発者が自身の目的で簡単にライブラリを実験し拡張することができます。
論文 参考訳(メタデータ) (2023-04-21T10:00:22Z) - Repro: An Open-Source Library for Improving the Reproducibility and
Usability of Publicly Available Research Code [74.28810048824519]
Reproは、研究コードのユーザビリティ向上を目的とした、オープンソースのライブラリである。
Dockerコンテナ内で研究者がリリースしたソフトウェアを実行するための軽量Python APIを提供する。
論文 参考訳(メタデータ) (2022-04-29T01:54:54Z) - Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$ [118.04625413322827]
$texttt5x$と$texttseqio$は、言語モデルの構築とトレーニングのためのオープンソースのソフトウェアライブラリである。
これらのライブラリは、複数のテラバイトのトレーニングデータを持つデータセット上で、数十億のパラメータを持つモデルをトレーニングするために使用されています。
論文 参考訳(メタデータ) (2022-03-31T17:12:13Z) - skrl: Modular and Flexible Library for Reinforcement Learning [0.0]
skrlはPythonで書かれた強化学習のためのオープンソースのモジュールライブラリである。
NVIDIA Isaac Gym環境のロード、設定、操作を可能にする。
論文 参考訳(メタデータ) (2022-02-08T12:43:31Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbensはオープンソースのPythonツールボックスで、クラス不均衡なデータに対してアンサンブル学習アルゴリズムを実装し、デプロイする。
imbensはMITオープンソースライセンスでリリースされており、Python Package Index (PyPI)からインストールすることができる。
論文 参考訳(メタデータ) (2021-11-24T20:14:20Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - fastai: A Layered API for Deep Learning [1.7223564681760164]
fastaiは、実践者に高度なコンポーネントを提供するディープラーニングライブラリである。
これは研究者に、新しいアプローチを構築するために混在し、マッチできる低レベルのコンポーネントを提供する。
論文 参考訳(メタデータ) (2020-02-11T21:16:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。