論文の概要: Graph Ordering Attention Networks
- arxiv url: http://arxiv.org/abs/2204.05351v1
- Date: Mon, 11 Apr 2022 18:13:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-14 07:13:49.244895
- Title: Graph Ordering Attention Networks
- Title(参考訳): グラフ順序付けアテンションネットワーク
- Authors: Michail Chatzianastasis, Johannes F. Lutzeyer, George Dasoulas,
Michalis Vazirgiannis
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題でうまく使われている。
近隣ノード間のインタラクションをキャプチャする新しいGNNコンポーネントであるグラフ順序付け注意層(GOAT)を導入する。
GOATレイヤは、複雑な情報をキャプチャするグラフメトリクスのモデリングにおけるパフォーマンスの向上を示す。
- 参考スコア(独自算出の注目度): 22.468776559433614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been successfully used in many problems
involving graph-structured data, achieving state-of-the-art performance. GNNs
typically employ a message-passing scheme, in which every node aggregates
information from its neighbors using a permutation-invariant aggregation
function. Standard well-examined choices such as the mean or sum aggregation
functions have limited capabilities, as they are not able to capture
interactions among neighbors. In this work, we formalize these interactions
using an information-theoretic framework that notably includes synergistic
information. Driven by this definition, we introduce the Graph Ordering
Attention (GOAT) layer, a novel GNN component that captures interactions
between nodes in a neighborhood. This is achieved by learning local node
orderings via an attention mechanism and processing the ordered representations
using a recurrent neural network aggregator. This design allows us to make use
of a permutation-sensitive aggregator while maintaining the
permutation-equivariance of the proposed GOAT layer. The GOAT model
demonstrates its increased performance in modeling graph metrics that capture
complex information, such as the betweenness centrality and the effective size
of a node. In practical use-cases, its superior modeling capability is
confirmed through its success in several real-world node classification
benchmarks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題に成功し、最先端のパフォーマンスを実現している。
GNNは一般的にメッセージパッシング方式を採用しており、各ノードは置換不変集約関数を使用して近隣の情報を集約する。
平均や和の集計関数のような標準的なよく検討された選択は、隣同士の相互作用を捉えることができないため、限られた能力を持つ。
本研究では,これらの相互作用を,特に相乗的情報を含む情報理論フレームワークを用いて形式化する。
この定義に基づいて、近隣のノード間の相互作用をキャプチャする新しいGNNコンポーネントである、グラフ順序付け注意層(GOAT)を導入する。
これは、アテンションメカニズムを介してローカルノードの順序付けを学習し、リカレントニューラルネットワークアグリゲータを使用して順序付けられた表現を処理することで達成される。
この設計により,提案するヤギ層の順列同分散を維持しつつ,順列感応アグリゲータを利用することができる。
GOATモデルは、ノードの相互中心性や有効サイズといった複雑な情報をキャプチャするグラフメトリクスのモデリングにおいて、そのパフォーマンスが向上していることを示す。
実例では、いくつかの実世界のノード分類ベンチマークの成功により、その優れたモデリング能力が確認されている。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
グラフニューラルネットワーク(GNN)が導入される以前、不規則なデータ、特にグラフのモデリングと解析は、ディープラーニングのアキレスのヒールであると考えられていた。
本稿では,GNNのコア操作に対して,極めて単純かつ無作為な修正を施した中央ノード置換変分関数を提案する。
モデルの具体的な性能向上は、モデルがより少ないパラメータを使用しながら、有意なマージンで過去の最先端結果を上回った場合に観察される。
論文 参考訳(メタデータ) (2021-09-20T05:04:26Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
グラフニューラルネットワーク(GNN)は、ノード分類タスクにおける芸術的パフォーマンスの現在の状態を提供するディープラーニング手法である。
本論文では,GATを位置埋め込みで強化するフレームワークであるG Graph Attentional Networks with Positional Embeddings(GAT-POS)を提案する。
GAT-POSは、強いGNNベースラインや、非ホモフィルグラフ上の最近の構造埋め込み強化GNNと比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-05-09T22:13:46Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
グラフニューラルネットワーク(GNN)は、推薦、ノード分類、リンク予測など、さまざまな機械学習タスクにおいて最先端のパフォーマンスを実現している。
既存のGNNモデルの多くは、隣接するノード情報を集約するために単一のタイプのアグリゲータを利用している。
本稿では,グラフ上の帰納学習のための新しいグラフニューラルネットワークアーキテクチャであるグラフ注意と相互作用ネットワーク(GAIN)を提案する。
論文 参考訳(メタデータ) (2020-11-03T00:20:24Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
グラフ畳み込みネットワーク(GCN)はグラフデータの表現学習に広く利用されている。
多くのグラフ分類アプリケーションにおいて、GCNベースのアプローチは従来の手法よりも優れている。
グラフコンテキスト対応ノード表現を用いた局所性保存型高密度GCNを提案する。
論文 参考訳(メタデータ) (2020-10-12T02:12:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。