Unsupervised Anomaly and Change Detection with Multivariate
Gaussianization
- URL: http://arxiv.org/abs/2204.05699v1
- Date: Tue, 12 Apr 2022 10:52:33 GMT
- Title: Unsupervised Anomaly and Change Detection with Multivariate
Gaussianization
- Authors: Jos\'e A. Padr\'on-Hidalgo, Valero Laparra, and Gustau Camps-Valls
- Abstract summary: Anomaly detection is a challenging problem given the high-dimensionality of the data.
We propose an unsupervised method for detecting anomalies and changes in remote sensing images.
We show the efficiency of the method in experiments involving both anomaly detection and change detection.
- Score: 8.508880949780893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is a field of intense research. Identifying low probability
events in data/images is a challenging problem given the high-dimensionality of
the data, especially when no (or little) information about the anomaly is
available a priori. While plenty of methods are available, the vast majority of
them do not scale well to large datasets and require the choice of some (very
often critical) hyperparameters. Therefore, unsupervised and computationally
efficient detection methods become strictly necessary. We propose an
unsupervised method for detecting anomalies and changes in remote sensing
images by means of a multivariate Gaussianization methodology that allows to
estimate multivariate densities accurately, a long-standing problem in
statistics and machine learning. The methodology transforms arbitrarily complex
multivariate data into a multivariate Gaussian distribution. Since the
transformation is differentiable, by applying the change of variables formula
one can estimate the probability at any point of the original domain. The
assumption is straightforward: pixels with low estimated probability are
considered anomalies. Our method can describe any multivariate distribution,
makes an efficient use of memory and computational resources, and is
parameter-free. We show the efficiency of the method in experiments involving
both anomaly detection and change detection in different remote sensing image
sets. Results show that our approach outperforms other linear and nonlinear
methods in terms of detection power in both anomaly and change detection
scenarios, showing robustness and scalability to dimensionality and sample
sizes.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
We propose a novel semi-supervised anomaly detection framework based on a heterogeneous feature network (HFN) for MTS.
We first combine the embedding similarity subgraph generated by sensor embedding and feature value similarity subgraph generated by sensor values to construct a time-series heterogeneous graph.
This approach fuses the state-of-the-art technologies of heterogeneous graph structure learning (HGSL) and representation learning.
arXiv Detail & Related papers (2022-11-01T05:01:34Z) - Stochastic Functional Analysis and Multilevel Vector Field Anomaly
Detection [0.0]
We develop a novel analysis approach for detecting anomalies in massive vector field datasets.
An optimal vector field Karhunen-Loeve (KL) expansion is applied to such random field data.
The method is applied to the problem of deforestation and degradation in the Amazon forest.
arXiv Detail & Related papers (2022-07-11T13:11:16Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Projected Sliced Wasserstein Autoencoder-based Hyperspectral Images
Anomaly Detection [42.585075865267946]
We propose the Projected Sliced Wasserstein (PSW) autoencoder-based anomaly detection method.
In particular, the computation-friendly eigen-decomposition method is leveraged to find the principal component for slicing the high-dimensional data.
Comprehensive experiments conducted on various real-world hyperspectral anomaly detection benchmarks demonstrate the superior performance of the proposed method.
arXiv Detail & Related papers (2021-12-20T09:21:02Z) - Nonlinear Distribution Regression for Remote Sensing Applications [6.664736150040092]
In many remote sensing applications one wants to estimate variables or parameters of interest from observations.
Standard algorithms such as neural networks, random forests or Gaussian processes are readily available to relate to the two.
This paper introduces a nonlinear (kernel-based) method for distribution regression that solves the previous problems without making any assumption on the statistics of the grouped data.
arXiv Detail & Related papers (2020-12-07T22:04:43Z) - Information Theory Measures via Multidimensional Gaussianization [7.788961560607993]
Information theory is an outstanding framework to measure uncertainty, dependence and relevance in data and systems.
It has several desirable properties for real world applications.
However, obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality.
arXiv Detail & Related papers (2020-10-08T07:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.