Random matrices: Application to quantum paradoxes
- URL: http://arxiv.org/abs/2204.05750v1
- Date: Fri, 8 Apr 2022 20:26:03 GMT
- Title: Random matrices: Application to quantum paradoxes
- Authors: Alexey A. Kryukov
- Abstract summary: Recently, a geometric embedding of the classical space and classical phase space of an n-particle system was constructed and shown to be physically meaningful.
Namely, the Newtonian dynamics of the particles was recovered from the Schroedinger dynamics by constraining the state of the system to the classical phase space submanifold of the space of states.
A series of theorems related to the embedding and the Schroedinger evolution with a random Hamiltonian was proven and shown to be applicable to the process of measurement in classical and quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, a geometric embedding of the classical space and classical phase
space of an n-particle system into the space of states of the system was
constructed and shown to be physically meaningful. Namely, the Newtonian
dynamics of the particles was recovered from the Schroedinger dynamics by
constraining the state of the system to the classical phase space submanifold
of the space of states. A series of theorems related to the embedding and the
Schroedinger evolution with a random Hamiltonian was proven and shown to be
applicable to the process of measurement in classical and quantum mechanics.
Here, these results are applied to have a fresh look at the main
quantum-mechanical thought experiments and paradoxes and to provide a new
insight into the process of collapse and the motion of macroscopic bodies in
quantum mechanics.
Related papers
- A non-Hermitian loop for a quantum measurement [0.0]
We establish a framework for a mechanism steering state vector collapse through time evolution.
For two-level systems, we put forward the phenomenon of chiral state conversion as a mechanism effectively eliminating superpositions.
arXiv Detail & Related papers (2024-08-08T17:59:10Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Species of spaces [0.0]
The accent is put in situations where traces of noncommutativity, witness of an emblematic feature of quantum mechanise.
Complex canonical transformations, spin-statistics, topological quantum fields theory, long time semiclassical approximation and underlying chaotic dynamics are considered.
arXiv Detail & Related papers (2022-06-28T12:00:51Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Phase space trajectories in quantum mechanics [0.0]
An adapted representation of quantum mechanics sheds new light on the relationship between quantum states and classical states.
In this approach the space of quantum states splits into a product of the state space of classical mechanics and a Hilbert space.
arXiv Detail & Related papers (2020-08-27T06:26:21Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.