Phase space trajectories in quantum mechanics
- URL: http://arxiv.org/abs/2008.11934v2
- Date: Mon, 12 Apr 2021 20:50:31 GMT
- Title: Phase space trajectories in quantum mechanics
- Authors: Christoph N\"olle
- Abstract summary: An adapted representation of quantum mechanics sheds new light on the relationship between quantum states and classical states.
In this approach the space of quantum states splits into a product of the state space of classical mechanics and a Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An adapted representation of quantum mechanics sheds new light on the
relationship between quantum states and classical states. In this approach the
space of quantum states splits into a product of the state space of classical
mechanics and a Hilbert space, and expectation values of observables decompose
into their classical value plus a quantum correction. The splitting is
preserved under time evolution of the Schr\"odinger equation under certain
assumptions, and the time evolution of the classical part of a quantum state is
governed by Hamilton's equation. The new representation is obtained from the
usual Hilbert space representation of quantum mechanics by introducing a gauge
degree of freedom in a time-dependent unitary transformation, followed by a
non-conventional gauge fixing condition.
Related papers
- Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Random matrices: Application to quantum paradoxes [0.0]
Recently, a geometric embedding of the classical space and classical phase space of an n-particle system was constructed and shown to be physically meaningful.
Namely, the Newtonian dynamics of the particles was recovered from the Schroedinger dynamics by constraining the state of the system to the classical phase space submanifold of the space of states.
A series of theorems related to the embedding and the Schroedinger evolution with a random Hamiltonian was proven and shown to be applicable to the process of measurement in classical and quantum mechanics.
arXiv Detail & Related papers (2022-04-08T20:26:03Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Classicalization of Quantum Fluctuations at the Planck Scale in the
R_h=ct Universe [0.0]
New developments in the analysis of the most recent Planck data suggest that the primordial power spectrum has a cutoff associated with the first quantum fluctuation.
We demonstrate that the birth of quantum fluctuations at the Planck scale would have been a process' supplanting the need for a measurement' in quantum mechanics.
arXiv Detail & Related papers (2021-05-10T15:13:50Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Quantum dynamics in Weyl-Heisenberg coherent states [0.0]
Weyl-Heisenberg coherent states are utilised to split quantum systems into classical' and quantum' degrees of freedom.
The decomposition is found to be equivalent to quantum mechanics perceived from a semi-classical frame.
arXiv Detail & Related papers (2020-08-31T18:47:24Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Classical and statistical limits of the quantum singular oscillator [0.0]
Weyl-Wigner phase-space and Bohmian mechanics frameworks are used.
Two inequivalent quantum systems are shown to be statistically equivalent at thermal equilibrium.
arXiv Detail & Related papers (2020-07-10T19:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.