A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs
- URL: http://arxiv.org/abs/2204.05796v2
- Date: Mon, 19 Aug 2024 23:34:39 GMT
- Title: A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs
- Authors: Shaolin Ji, Shige Peng, Ying Peng, Xichuan Zhang,
- Abstract summary: We first transform the problem into a Stackelberg differential game problem (leader-follower problem)
We compute two examples of the investment-consumption problem solved through utility models.
The results of both examples demonstrate the effectiveness of our proposed algorithm.
- Score: 1.0703175070560689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper,we mainly focus on the numerical solution of high-dimensional stochastic optimal control problem driven by fully-coupled forward-backward stochastic differential equations (FBSDEs in short) through deep learning. We first transform the problem into a stochastic Stackelberg differential game problem (leader-follower problem), then a bi-level optimization method is developed where the leader's cost functional and the follower's cost functional are optimized alternatively via deep neural networks. As for the numerical results, we compute two examples of the investment-consumption problem solved through stochastic recursive utility models, and the results of both examples demonstrate the effectiveness of our proposed algorithm.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Deep Learning Methods for S Shaped Utility Maximisation with a Random Reference Point [0.0]
We develop several numerical methods for solving the problem using deep learning and duality methods.
We use deep learning methods to solve the associated Hamilton-Jacobi-Bellman equation for both the primal and dual problems.
We compare the solution of this non-concave problem to that of concavified utility, a random function depending on the benchmark, in both complete and incomplete markets.
arXiv Detail & Related papers (2024-10-07T22:07:59Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
Optimal trajectory local is computationally expensive for nonlinear and high-dimensional dynamical systems.
In this paper we introduce Diffu-based general model for non-dimensional optima problems.
We also present Diff+, a novel constrained diffusion model with an additional loss in that further reduces the problem violations.
arXiv Detail & Related papers (2024-02-22T03:52:17Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Deep Learning for Constrained Utility Maximisation [0.0]
This paper proposes two algorithms for solving control problems with deep learning.
The first algorithm solves Markovian problems via the Hamilton Jacobi Bellman equation.
The second uses the full power of the duality method to solve non-Markovian problems.
arXiv Detail & Related papers (2020-08-26T18:40:57Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Solving stochastic optimal control problem via stochastic maximum
principle with deep learning method [0.2064612766965483]
Three algorithms are proposed to solve the new control problem.
An important application of this method is to calculate the sub-linear expectations, which correspond to a kind of fully nonlinear PDEs.
arXiv Detail & Related papers (2020-07-05T02:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.