A DNN Framework for Learning Lagrangian Drift With Uncertainty
- URL: http://arxiv.org/abs/2204.05891v2
- Date: Wed, 24 May 2023 15:39:40 GMT
- Title: A DNN Framework for Learning Lagrangian Drift With Uncertainty
- Authors: Joseph Jenkins, Adeline Paiement, Yann Ourmi\`eres, Julien Le Sommer,
Jacques Verron, Cl\'ement Ubelmann and Herv\'e Glotin
- Abstract summary: Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due to unresolved physical phenomena within the data.
We present a purely data-driven framework for modelling probabilistic drift in flexible environments.
- Score: 0.5541644538483949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructions of Lagrangian drift, for example for objects lost at sea, are
often uncertain due to unresolved physical phenomena within the data.
Uncertainty is usually overcome by introducing stochasticity into the drift,
but this approach requires specific assumptions for modelling uncertainty. We
remove this constraint by presenting a purely data-driven framework for
modelling probabilistic drift in flexible environments. Using ocean circulation
model simulations, we generate probabilistic trajectories of object location by
simulating uncertainty in the initial object position. We train an emulator of
probabilistic drift over one day given perfectly known velocities and observe
good agreement with numerical simulations. Several loss functions are tested.
Then, we strain our framework by training models where the input information is
imperfect. On these harder scenarios, we observe reasonable predictions
although the effects of data drift become noticeable when evaluating the models
against unseen flow scenarios.
Related papers
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
We present a strategy for training neural network models to non-intrusively correct under-resolved long-time simulations of chaotic systems.
We demonstrate its ability to accurately predict the anisotropic statistics over time horizons more than 30 times longer than the data seen in training.
arXiv Detail & Related papers (2024-08-02T18:34:30Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
We argue that modellers must treat simulators as idealistic representations of the true data generating process.
In this work we revisit neural posterior estimation (NPE), a class of algorithms that enable black-box parameter inference in simulation models.
We find that the presence of misspecification, in contrast, leads to unreliable inference when NPE is used naively.
arXiv Detail & Related papers (2022-10-12T20:06:55Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
We propose a physics-constrained machine learning method-based on reservoir computing- to time-accurately predict extreme events and long-term velocity statistics in a model of turbulent shear flow.
We show that the combination of the two approaches is able to accurately reproduce the velocity statistics and to predict the occurrence and amplitude of extreme events in a model of self-sustaining process in turbulence.
arXiv Detail & Related papers (2021-02-15T12:29:09Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.