論文の概要: Machine Learning Security against Data Poisoning: Are We There Yet?
- arxiv url: http://arxiv.org/abs/2204.05986v1
- Date: Tue, 12 Apr 2022 17:52:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 14:39:27.964898
- Title: Machine Learning Security against Data Poisoning: Are We There Yet?
- Title(参考訳): データ中毒に対する機械学習のセキュリティ:まだあるのか?
- Authors: Antonio Emanuele Cin\`a, Kathrin Grosse, Ambra Demontis, Battista
Biggio, Fabio Roli, and Marcello Pelillo
- Abstract要約: この記事では、機械学習モデルの学習に使用されるトレーニングデータを侵害するデータ中毒攻撃についてレビューする。
次に、モデルトレーニングの前、中、後のこれらの攻撃を緩和する方法について議論する。
- 参考スコア(独自算出の注目度): 26.855688393227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of machine learning has been fueled by the increasing
availability of computing power and large amounts of data in many different
applications. However, the trustworthiness of the resulting models can be
compromised when such data is maliciously manipulated to mislead the learning
process. In this article, we first review poisoning attacks that compromise the
training data used to learn machine-learning models, including attacks that aim
to reduce the overall performance, manipulate the predictions on specific test
samples, and even implant backdoors in the model. We then discuss how to
mitigate these attacks before, during, and after model training. We conclude
our article by formulating some relevant open challenges which are hindering
the development of testing methods and benchmarks suitable for assessing and
improving the trustworthiness of machine-learning models against data poisoning
attacks.
- Abstract(参考訳): 最近の機械学習の成功は、多くの異なるアプリケーションで計算能力と大量のデータの可用性が増すことに拍車をかけた。
しかし、そのようなデータを不正に操作して学習プロセスを誤解させると、結果モデルの信頼性が損なわれる可能性がある。
本稿では,機械学習モデルの学習に使用されるトレーニングデータを損なう毒殺攻撃について,総合的な性能低下を目的とした攻撃,特定のテストサンプルの予測の操作,さらにはモデルにバックドアを埋め込む攻撃について概説する。
次に,モデルトレーニングの前後において,これらの攻撃を軽減する方法について論じる。
本稿では、データ中毒攻撃に対する機械学習モデルの信頼性評価と改善に適したテスト方法やベンチマークの開発を妨げる、関連するオープンな課題を定式化する。
関連論文リスト
- Investigating Adversarial Attacks in Software Analytics via Machine Learning Explainability [11.16693333878553]
本研究では、ソフトウェア解析タスクにおけるMLモデルの堅牢性を測定するために、ML説明可能性と敵攻撃の関係について検討する。
6つのデータセット、3つのML説明可能性技術、7つのMLモデルを含む我々の実験は、ソフトウェア分析タスクにおいてMLモデルに対する敵攻撃を成功させるのにML説明可能性を使用することができることを示した。
論文 参考訳(メタデータ) (2024-08-07T23:21:55Z) - A Method to Facilitate Membership Inference Attacks in Deep Learning Models [5.724311218570013]
我々は,従来の技術よりも厳格に強力な新たな会員推論攻撃を実演する。
私たちの攻撃は、敵がすべてのトレーニングサンプルを確実に識別する権限を与えます。
これらのモデルは、共通の会員プライバシー監査の下で、増幅された会員リークを効果的に偽装できることを示す。
論文 参考訳(メタデータ) (2024-07-02T03:33:42Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - SecurityNet: Assessing Machine Learning Vulnerabilities on Public Models [74.58014281829946]
本研究では, モデル盗難攻撃, メンバーシップ推論攻撃, パブリックモデルにおけるバックドア検出など, いくつかの代表的な攻撃・防御の有効性を解析する。
実験により,これらの攻撃・防御性能は,自己学習モデルと比較して,公共モデルによって大きく異なることが示された。
論文 参考訳(メタデータ) (2023-10-19T11:49:22Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
本稿では,最近の機械学習技術,検証機構,潜在的攻撃について概説する。
新たな課題と今後の研究方向性を強調します。
本稿では、プライバシ、エクイティ、レジリエンスをMLシステムに統合するための貴重なリソースの提供を目的としている。
論文 参考訳(メタデータ) (2023-05-12T14:28:02Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
I-IoT環境における敵攻撃の検出と軽減のための二重防御機構を提案する。
まず、新規性検出アルゴリズムを用いて、サンプルに対して逆攻撃があるかどうかを検知する。
攻撃があった場合、敵の再訓練はより堅牢なモデルを提供する一方、通常のサンプルに対して標準的な訓練を適用する。
論文 参考訳(メタデータ) (2023-01-23T22:10:40Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。