Near-Equilibrium Approach to Transport in Complex Sachdev-Ye-Kitaev
Models
- URL: http://arxiv.org/abs/2204.06019v1
- Date: Tue, 12 Apr 2022 18:00:36 GMT
- Title: Near-Equilibrium Approach to Transport in Complex Sachdev-Ye-Kitaev
Models
- Authors: Cristian Zanoci and Brian Swingle
- Abstract summary: We study the non-equilibrium dynamics of a one-dimensional complex Sachdev-Ye-Kitaev chain.
We explore the thermoelectric transport properties of this system by imposing uniform temperature and chemical potential gradients.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the non-equilibrium dynamics of a one-dimensional complex
Sachdev-Ye-Kitaev chain by directly solving for the steady state Green's
functions in terms of small perturbations around their equilibrium values. The
model exhibits strange metal behavior without quasiparticles and features
diffusive propagation of both energy and charge. We explore the thermoelectric
transport properties of this system by imposing uniform temperature and
chemical potential gradients. We then expand the conserved charges and their
associated currents to leading order in these gradients, which we can compute
numerically and analytically for different parameter regimes. This allows us to
extract the full temperature and chemical potential dependence of the transport
coefficients. In particular, we uncover that the diffusivity matrix takes on a
simple form in various limits and leads to simplified Einstein relations. At
low temperatures, we also recover a previously known result for the
Wiedemann-Franz ratio. Furthermore, we establish a relationship between
diffusion and quantum chaos by showing that the diffusivity eigenvalues are
upper bounded by the chaos propagation rate at all temperatures. Our work
showcases an important example of an analytically tractable calculation of
transport properties in a strongly interacting quantum system and reveals a
more general purpose method for addressing strongly coupled transport.
Related papers
- Extensive Long-Range Entanglement at Finite Temperatures from a Nonequilibrium Bias [0.0]
We study the entanglement properties of free fermions on a one-dimensional lattice that contains a generic charge- and energy-conserving noninteracting impurity.
We show that all these measures scale linearly with the overlap between one subsystem and the mirror image of the other.
While a simple proportionality relation between the negativity and R'enyi versions of the mutual information is observed to hold at zero temperature, it breaks down at finite temperatures.
arXiv Detail & Related papers (2024-04-16T18:00:16Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Thermodynamic Unification of Optimal Transport: Thermodynamic
Uncertainty Relation, Minimum Dissipation, and Thermodynamic Speed Limits [0.0]
We show that the Wasserstein distance equals the minimum product of irreversible entropy production and dynamical state mobility over all admissible Markovian dynamics.
These formulas not only unify the relationship between thermodynamics and the optimal transport theory for discrete and continuous cases but also generalize it to the quantum case.
arXiv Detail & Related papers (2022-06-06T15:37:59Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Energy Transport in Sachdev-Ye-Kitaev Networks Coupled to Thermal Baths [0.0]
We develop a framework for studying the equilibrium and non-equilibrium properties of arbitrary networks of Sachdev-Ye-Kitaev clusters coupled to thermal baths.
We study the emerging non-equilibrium steady state using the Schwinger-Keldysh formalism.
We establish a relationship between energy transport and quantum chaos by showing that the diffusion constant is upper bounded by the chaos propagation rate at all temperatures.
arXiv Detail & Related papers (2021-09-07T18:06:02Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Coherent Transport in Periodically Driven Mesoscopic Conductors: From
Scattering Matrices to Quantum Thermodynamics [0.0]
Floquet scattering amplitudes describe the transition of a transport carrier through a periodically driven sample.
We show that this framework is inherently consistent with the first and the second law of thermodynamics.
We derive a generalized Green-Kubo relation, which makes it possible to express the response of any mean currents to small variations of temperature and chemical potential.
arXiv Detail & Related papers (2020-02-25T17:34:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.