Extensive Long-Range Entanglement at Finite Temperatures from a Nonequilibrium Bias
- URL: http://arxiv.org/abs/2404.10822v2
- Date: Mon, 22 Jul 2024 19:31:17 GMT
- Title: Extensive Long-Range Entanglement at Finite Temperatures from a Nonequilibrium Bias
- Authors: Shachar Fraenkel, Moshe Goldstein,
- Abstract summary: We study the entanglement properties of free fermions on a one-dimensional lattice that contains a generic charge- and energy-conserving noninteracting impurity.
We show that all these measures scale linearly with the overlap between one subsystem and the mirror image of the other.
While a simple proportionality relation between the negativity and R'enyi versions of the mutual information is observed to hold at zero temperature, it breaks down at finite temperatures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermal equilibrium states of local quantum many-body systems are notorious for their spatially decaying correlations, which place severe restrictions on the types of many-body entanglement structures that may be observed at finite temperatures. These restrictions may however be defied when an out-of-equilibrium steady state is considered instead. In this paper, we study the entanglement properties of free fermions on a one-dimensional lattice that contains a generic charge- and energy-conserving noninteracting impurity, and that is connected at its edges to two reservoirs with different equilibrium energy distributions. These distributions may differ in either temperature, chemical potential, or both, thereby inducing an external bias. We analytically derive exact asymptotic expressions for several quantum information measures -- the mutual information, its R\'enyi generalizations, and the fermionic negativity -- that quantify the correlation and entanglement between two subsystems located on opposite sides of the impurity. We show that all these measures scale (to a leading order) linearly with the overlap between one subsystem and the mirror image of the other (upon reflection of the latter about the impurity), independently of the distance between the subsystems. While a simple proportionality relation between the negativity and R\'enyi versions of the mutual information is observed to hold at zero temperature, it breaks down at finite temperatures, suggesting that these quantities represent strong long-range correlations of different origins. Our results generalize previous findings that were limited to the case of a chemical-potential bias at zero temperature, rigorously demonstrating that the effect of long-range volume-law entanglement is robust at finite temperatures.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Thermalization in Trapped Bosonic Systems With Disorder [3.1457219084519004]
We study experimentally accessible states in a system of bosonic atoms trapped in an open linear chain with disorder.
We find that, within certain tolerances, most states in the chaotic region thermalize.
However, states with low participation ratios in the energy eigenstate basis show greater deviations from thermal equilibrium values.
arXiv Detail & Related papers (2024-07-05T19:00:02Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - An analysis of anomalous particle flow between two correlated systems [0.0]
We study the effect of correlation on the direction of particle exchange between local thermal sub-systems where the total system is isolated.
Our findings show that the direction of the particle exchange cannot be predetermined by the chemical potential difference in the presence of correlation.
arXiv Detail & Related papers (2023-02-14T13:05:54Z) - Extensive Long-Range Entanglement in a Nonequilibrium Steady State [0.0]
Entanglement measures constitute powerful tools in the quantitative description of quantum many-body systems out of equilibrium.
We study entanglement in the current-carrying steady state of a paradigmatic one-dimensional model of noninteracting fermions at zero temperature in the presence of a scatterer.
arXiv Detail & Related papers (2022-05-25T18:01:16Z) - Energy Transport in Sachdev-Ye-Kitaev Networks Coupled to Thermal Baths [0.0]
We develop a framework for studying the equilibrium and non-equilibrium properties of arbitrary networks of Sachdev-Ye-Kitaev clusters coupled to thermal baths.
We study the emerging non-equilibrium steady state using the Schwinger-Keldysh formalism.
We establish a relationship between energy transport and quantum chaos by showing that the diffusion constant is upper bounded by the chaos propagation rate at all temperatures.
arXiv Detail & Related papers (2021-09-07T18:06:02Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.