Countering detector manipulation attacks in quantum communication
through detector self-testing
- URL: http://arxiv.org/abs/2204.06155v2
- Date: Tue, 31 May 2022 13:39:16 GMT
- Title: Countering detector manipulation attacks in quantum communication
through detector self-testing
- Authors: Lijiong Shen and Christian Kurtsiefer
- Abstract summary: A vulnerability in single-photon detectors to blinding attacks has been one of the biggest concerns.
We present a countermeasure based on self-testing of detectors to confirm their intended operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical quantum key distribution systems, imperfect physical devices
open security loopholes that challenge the core promise of this technology.
Apart from various side channels, a vulnerability of single-photon detectors to
blinding attacks has been one of the biggest concerns, and has been addressed
both by technical means as well as advanced protocols. In this work, we present
a countermeasure against such attacks based on self-testing of detectors to
confirm their intended operation without relying on specific aspects of their
inner working, and to reveal any manipulation attempts. We experimentally
demonstrate this countermeasure with a typical InGaAs avalanche photodetector,
but the scheme can be easily implemented with any single photon detector.
Related papers
- Scalable Ensemble-based Detection Method against Adversarial Attacks for
speaker verification [73.30974350776636]
This paper comprehensively compares mainstream purification techniques in a unified framework.
We propose an easy-to-follow ensemble approach that integrates advanced purification modules for detection.
arXiv Detail & Related papers (2023-12-14T03:04:05Z) - Automated verification of countermeasure against detector-control attack
in quantum key distribution [0.0]
Attacks that control single-photon detectors in quantum key distribution are capable of eavesdropping the secret key.
We report an automated testbench that checks the detector's vulnerabilities against these attacks.
arXiv Detail & Related papers (2023-05-29T21:08:08Z) - Exploring Frequency Adversarial Attacks for Face Forgery Detection [59.10415109589605]
We propose a frequency adversarial attack method against face forgery detectors.
Inspired by the idea of meta-learning, we also propose a hybrid adversarial attack that performs attacks in both the spatial and frequency domains.
arXiv Detail & Related papers (2022-03-29T15:34:13Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS.
Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter.
We implement our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average.
arXiv Detail & Related papers (2021-05-22T12:19:03Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Detector blinding attacks on counterfactual quantum key distribution [0.0]
Counterfactual quantum key distribution protocols allow two sides to establish a common secret key.
Part of the quantum state used to establish each bit never leaves the transmitting side, which hinders some attacks.
We present two attacks that use this ability to compromise the security of counterfactual quantum key distribution.
arXiv Detail & Related papers (2020-11-05T07:41:39Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Security of quantum key distribution with detection-efficiency mismatch
in the multiphoton case [0.0]
Current security of QKD with detection-efficiency mismatch rely on the assumption of the single-photon light source on the sender side or on the assumption of the single-photon input of the receiver side.
Here we present a rigorous security proof without these assumptions and, thus, solve this important problem and prove the security of QKD with detection-efficiency mismatch against general attacks.
arXiv Detail & Related papers (2020-04-16T17:55:30Z) - Security proof of practical quantum key distribution with
detection-efficiency mismatch [3.1988884923120313]
We develop a method that allows to provide security proofs without the usual assumption.
Our method can take the detection-efficiency mismatch into account without having to restrict the attack strategy of the adversary.
Our method also shows that in the absence of efficiency mismatch in our detector model, the key rate increases if the loss due to detection inefficiency is assumed to be outside of the adversary's control.
arXiv Detail & Related papers (2020-04-09T06:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.