Loss-tolerant quantum key distribution with detection efficiency mismatch
- URL: http://arxiv.org/abs/2412.09684v1
- Date: Thu, 12 Dec 2024 19:01:56 GMT
- Title: Loss-tolerant quantum key distribution with detection efficiency mismatch
- Authors: Alessandro Marcomini, Akihiro Mizutani, Fadri Grünenfelder, Marcos Curty, Kiyoshi Tamaki,
- Abstract summary: We establish a security proof for the loss-tolerant P&M QKD protocol that incorporates imperfections in both the source and the detectors.
Specifically, we demonstrate the security of this scheme when the emitted states deviate from the ideal ones.
- Score: 39.58317527488534
- License:
- Abstract: Current implementations of quantum key distribution (QKD) typically rely on prepare-and-measure (P&M) schemes. Unfortunately, these implementations are not completely secure, unless security proofs fully incorporate all imperfections of real devices. So far, existing proofs have primarily focused on imperfections of either the light source or the measurement device. In this paper, we establish a security proof for the loss-tolerant P&M QKD protocol that incorporates imperfections in both the source and the detectors. Specifically, we demonstrate the security of this scheme when the emitted states deviate from the ideal ones and Bob's measurement device does not meet the basis-independent detection efficiency condition. Furthermore, we conduct an experiment to characterise the detection efficiency mismatch of commercial single-photon detectors as a function of the polarisation state of the input light, and determine the expected secret key rate in the presence of state preparation flaws when using such detectors. Our work provides a way towards guaranteeing the security of actual implementations of widely deployed P&M QKD.
Related papers
- Security of the decoy-state BB84 protocol with imperfect state
preparation [0.0]
We study the security of the efficient decoy-state BB84 QKD protocol in the presence of source flaws.
We investigate the non-Poissonian photon-number statistics due to coherent-state intensity fluctuations and the basis-dependence of the source due to non-ideal polarization state preparation.
arXiv Detail & Related papers (2023-10-02T19:59:57Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - A security framework for quantum key distribution implementations [1.2815904071470707]
We present a security proof in the finite-key regime against coherent attacks.
Our proof requires minimal state characterization, which facilitates its application to real-life implementations.
arXiv Detail & Related papers (2023-05-10T07:02:32Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Measurement-device-independent quantum key distribution with insecure
sources [11.835944016730302]
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing.
Here, we present a general formalism based on reference technique to prove proofs of MDI-QKD against any possible sources imperfection/or side channels.
arXiv Detail & Related papers (2021-07-16T10:14:57Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Security of quantum key distribution with detection-efficiency mismatch
in the multiphoton case [0.0]
Current security of QKD with detection-efficiency mismatch rely on the assumption of the single-photon light source on the sender side or on the assumption of the single-photon input of the receiver side.
Here we present a rigorous security proof without these assumptions and, thus, solve this important problem and prove the security of QKD with detection-efficiency mismatch against general attacks.
arXiv Detail & Related papers (2020-04-16T17:55:30Z) - Security proof of practical quantum key distribution with
detection-efficiency mismatch [3.1988884923120313]
We develop a method that allows to provide security proofs without the usual assumption.
Our method can take the detection-efficiency mismatch into account without having to restrict the attack strategy of the adversary.
Our method also shows that in the absence of efficiency mismatch in our detector model, the key rate increases if the loss due to detection inefficiency is assumed to be outside of the adversary's control.
arXiv Detail & Related papers (2020-04-09T06:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.