Decentralized Collaborative Learning Framework for Next POI
Recommendation
- URL: http://arxiv.org/abs/2204.06516v1
- Date: Wed, 30 Mar 2022 11:00:11 GMT
- Title: Decentralized Collaborative Learning Framework for Next POI
Recommendation
- Authors: Jing Long, Tong Chen, Nguyen Quoc Viet Hung, Hongzhi Yin
- Abstract summary: Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs)
accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers.
We propose a novel decentralized collaborative learning framework for POI recommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner.
- Score: 39.65626819903099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next Point-of-Interest (POI) recommendation has become an indispensable
functionality in Location-based Social Networks (LBSNs) due to its
effectiveness in helping people decide the next POI to visit. However, accurate
recommendation requires a vast amount of historical check-in data, thus
threatening user privacy as the location-sensitive data needs to be handled by
cloud servers. Although there have been several on-device frameworks for
privacy-preserving POI recommendations, they are still resource-intensive when
it comes to storage and computation, and show limited robustness to the high
sparsity of user-POI interactions. On this basis, we propose a novel
decentralized collaborative learning framework for POI recommendation (DCLR),
which allows users to train their personalized models locally in a
collaborative manner. DCLR significantly reduces the local models' dependence
on the cloud for training, and can be used to expand arbitrary centralized
recommendation models. To counteract the sparsity of on-device user data when
learning each local model, we design two self-supervision signals to pretrain
the POI representations on the server with geographical and categorical
correlations of POIs. To facilitate collaborative learning, we innovatively
propose to incorporate knowledge from either geographically or semantically
similar users into each local model with attentive aggregation and mutual
information maximization. The collaborative learning process makes use of
communications between devices while requiring only minor engagement from the
central server for identifying user groups, and is compatible with common
privacy preservation mechanisms like differential privacy.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.