DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation
- URL: http://arxiv.org/abs/2410.10130v1
- Date: Mon, 14 Oct 2024 03:37:47 GMT
- Title: DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation
- Authors: Ruiqi Zheng, Liang Qu, Guanhua Ye, Tong Chen, Yuhui Shi, Hongzhi Yin,
- Abstract summary: Decentralized collaborative learning for Point-of-Interest (POI) recommendation has gained research interest.
We propose a novel decentralized collaborative learning with knowledge graph enhancement framework for POI recommendation (DecKG)
- Score: 33.42817477508175
- License:
- Abstract: Decentralized collaborative learning for Point-of-Interest (POI) recommendation has gained research interest due to its advantages in privacy preservation and efficiency, as it keeps data locally and leverages collaborative learning among clients to train models in a decentralized manner. However, since local data is often limited and insufficient for training accurate models, a common solution is integrating external knowledge as auxiliary information to enhance model performance. Nevertheless, this solution poses challenges for decentralized collaborative learning. Due to private nature of local data, identifying relevant auxiliary information specific to each user is non-trivial. Furthermore, resource-constrained local devices struggle to accommodate all auxiliary information, which places heavy burden on local storage. To fill the gap, we propose a novel decentralized collaborative learning with knowledge graph enhancement framework for POI recommendation (DecKG). Instead of directly uploading interacted items, users generate desensitized check-in data by uploading general categories of interacted items and sampling similar items from same category. The server then pretrains KG without sensitive user-item interactions and deploys relevant partitioned sub-KGs to individual users. Entities are further refined on the device, allowing client to client communication to exchange knowledge learned from local data and sub-KGs. Evaluations across two real-world datasets demonstrate DecKG's effectiveness recommendation performance.
Related papers
- Personalized Decentralized Federated Learning with Knowledge
Distillation [5.469841541565307]
Personalization in federated learning functions as a coordinator for clients with high variance in data or behavior.
It is generally challenging to quantify similarity under limited knowledge about other users' models given to users in a decentralized network.
We propose a personalized and fully decentralized FL algorithm, leveraging knowledge distillation techniques to empower each device so as to discern statistical distances between local models.
arXiv Detail & Related papers (2023-02-23T16:41:07Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - Decentralized Collaborative Learning Framework for Next POI
Recommendation [39.65626819903099]
Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs)
accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers.
We propose a novel decentralized collaborative learning framework for POI recommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner.
arXiv Detail & Related papers (2022-03-30T11:00:11Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Federated Learning from Small Datasets [48.879172201462445]
Federated learning allows multiple parties to collaboratively train a joint model without sharing local data.
We propose a novel approach that intertwines model aggregations with permutations of local models.
The permutations expose each local model to a daisy chain of local datasets resulting in more efficient training in data-sparse domains.
arXiv Detail & Related papers (2021-10-07T13:49:23Z) - IFedAvg: Interpretable Data-Interoperability for Federated Learning [39.388223565330385]
In this work, we define and address low interoperability induced by underlying client data inconsistencies in federated learning for tabular data.
The proposed method, iFedAvg, builds on federated averaging adding local element-wise affine layers to allow for a personalized and granular understanding of the collaborative learning process.
We evaluate iFedAvg using several public benchmarks and a collection of real-world datasets from the 2014 - 2016 West African Ebola epidemic, jointly forming the largest such dataset in the world.
arXiv Detail & Related papers (2021-07-14T09:54:00Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.