Pyramidal Attention for Saliency Detection
- URL: http://arxiv.org/abs/2204.06788v1
- Date: Thu, 14 Apr 2022 06:57:46 GMT
- Title: Pyramidal Attention for Saliency Detection
- Authors: Tanveer Hussain, Abbas Anwar, Saeed Anwar, Lars Petersson, Sung Wook
Baik
- Abstract summary: This paper exploits only RGB images, estimates depth from RGB, and leverages the intermediate depth features.
We employ a pyramidal attention structure to extract multi-level convolutional-transformer features to process initial stage representations.
We report significantly improved performance against 21 and 40 state-of-the-art SOD methods on eight RGB and RGB-D datasets.
- Score: 30.554118525502115
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Salient object detection (SOD) extracts meaningful contents from an input
image. RGB-based SOD methods lack the complementary depth clues; hence,
providing limited performance for complex scenarios. Similarly, RGB-D models
process RGB and depth inputs, but the depth data availability during testing
may hinder the model's practical applicability. This paper exploits only RGB
images, estimates depth from RGB, and leverages the intermediate depth
features. We employ a pyramidal attention structure to extract multi-level
convolutional-transformer features to process initial stage representations and
further enhance the subsequent ones. At each stage, the backbone transformer
model produces global receptive fields and computing in parallel to attain
fine-grained global predictions refined by our residual convolutional attention
decoder for optimal saliency prediction. We report significantly improved
performance against 21 and 40 state-of-the-art SOD methods on eight RGB and
RGB-D datasets, respectively. Consequently, we present a new SOD perspective of
generating RGB-D SOD without acquiring depth data during training and testing
and assist RGB methods with depth clues for improved performance. The code and
trained models are available at
https://github.com/tanveer-hussain/EfficientSOD2
Related papers
- Salient Object Detection in RGB-D Videos [11.805682025734551]
This paper makes two primary contributions: the dataset and the model.
We construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth.
We introduce DCTNet+, a three-stream network tailored for RGB-D VSOD.
arXiv Detail & Related papers (2023-10-24T03:18:07Z) - Depth-Adapted CNNs for RGB-D Semantic Segmentation [2.341385717236931]
We propose a novel framework to incorporate the depth information in the RGB convolutional neural network (CNN)
Specifically, our Z-ACN generates a 2D depth-adapted offset which is fully constrained by low-level features to guide the feature extraction on RGB images.
With the generated offset, we introduce two intuitive and effective operations to replace basic CNN operators.
arXiv Detail & Related papers (2022-06-08T14:59:40Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient
Object Detection [73.31632581915201]
We propose a novel data-level recombination strategy to fuse RGB with D (depth) before deep feature extraction.
A newly lightweight designed triple-stream network is applied over these novel formulated data to achieve an optimal channel-wise complementary fusion status between the RGB and D.
arXiv Detail & Related papers (2020-08-07T10:13:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.