Salient Object Detection in RGB-D Videos
- URL: http://arxiv.org/abs/2310.15482v2
- Date: Tue, 21 May 2024 05:52:16 GMT
- Title: Salient Object Detection in RGB-D Videos
- Authors: Ao Mou, Yukang Lu, Jiahao He, Dingyao Min, Keren Fu, Qijun Zhao,
- Abstract summary: This paper makes two primary contributions: the dataset and the model.
We construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth.
We introduce DCTNet+, a three-stream network tailored for RGB-D VSOD.
- Score: 11.805682025734551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the widespread adoption of depth-sensing acquisition devices, RGB-D videos and related data/media have gained considerable traction in various aspects of daily life. Consequently, conducting salient object detection (SOD) in RGB-D videos presents a highly promising and evolving avenue. Despite the potential of this area, SOD in RGB-D videos remains somewhat under-explored, with RGB-D SOD and video SOD (VSOD) traditionally studied in isolation. To explore this emerging field, this paper makes two primary contributions: the dataset and the model. On one front, we construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth and characterized by its diversity of scenes and rigorous frame-by-frame annotations. We validate the dataset through comprehensive attribute and object-oriented analyses, and provide training and testing splits. Moreover, we introduce DCTNet+, a three-stream network tailored for RGB-D VSOD, with an emphasis on RGB modality and treats depth and optical flow as auxiliary modalities. In pursuit of effective feature enhancement, refinement, and fusion for precise final prediction, we propose two modules: the multi-modal attention module (MAM) and the refinement fusion module (RFM). To enhance interaction and fusion within RFM, we design a universal interaction module (UIM) and then integrate holistic multi-modal attentive paths (HMAPs) for refining multi-modal low-level features before reaching RFMs. Comprehensive experiments, conducted on pseudo RGB-D video datasets alongside our RDVS, highlight the superiority of DCTNet+ over 17 VSOD models and 14 RGB-D SOD models. Ablation experiments were performed on both pseudo and realistic RGB-D video datasets to demonstrate the advantages of individual modules as well as the necessity of introducing realistic depth. Our code together with RDVS dataset will be available at https://github.com/kerenfu/RDVS/.
Related papers
- ViDSOD-100: A New Dataset and a Baseline Model for RGB-D Video Salient Object Detection [51.16181295385818]
We first collect an annotated RGB-D video SODOD (DSOD-100) dataset, which contains 100 videos within a total of 9,362 frames.
All the frames in each video are manually annotated to a high-quality saliency annotation.
We propose a new baseline model, named attentive triple-fusion network (ATF-Net) for RGB-D salient object detection.
arXiv Detail & Related papers (2024-06-18T12:09:43Z) - HODINet: High-Order Discrepant Interaction Network for RGB-D Salient
Object Detection [4.007827908611563]
RGB-D salient object detection (SOD) aims to detect the prominent regions by jointly modeling RGB and depth information.
Most RGB-D SOD methods apply the same type of backbones and fusion modules to identically learn the multimodality and multistage features.
In this paper, we propose a high-order discrepant interaction network (HODINet) for RGB-D SOD.
arXiv Detail & Related papers (2023-07-03T11:56:21Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Pyramidal Attention for Saliency Detection [30.554118525502115]
This paper exploits only RGB images, estimates depth from RGB, and leverages the intermediate depth features.
We employ a pyramidal attention structure to extract multi-level convolutional-transformer features to process initial stage representations.
We report significantly improved performance against 21 and 40 state-of-the-art SOD methods on eight RGB and RGB-D datasets.
arXiv Detail & Related papers (2022-04-14T06:57:46Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Siamese Network for RGB-D Salient Object Detection and Beyond [113.30063105890041]
A novel framework is proposed to learn from both RGB and depth inputs through a shared network backbone.
Comprehensive experiments using five popular metrics show that the designed framework yields a robust RGB-D saliency detector.
We also link JL-DCF to the RGB-D semantic segmentation field, showing its capability of outperforming several semantic segmentation models.
arXiv Detail & Related papers (2020-08-26T06:01:05Z) - RGB-D Salient Object Detection: A Survey [195.83586883670358]
We provide a comprehensive survey of RGB-D based SOD models from various perspectives.
We also review SOD models and popular benchmark datasets from this domain.
We discuss several challenges and open directions of RGB-D based SOD for future research.
arXiv Detail & Related papers (2020-08-01T10:01:32Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.