論文の概要: Autonomous Satellite Detection and Tracking using Optical Flow
- arxiv url: http://arxiv.org/abs/2204.07025v1
- Date: Thu, 14 Apr 2022 15:23:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-15 14:00:58.444829
- Title: Autonomous Satellite Detection and Tracking using Optical Flow
- Title(参考訳): オプティカルフローを用いた自律衛星検出と追跡
- Authors: David Zuehlke, Daniel Posada, Madhur Tiwari, and Troy Henderson
- Abstract要約: 画像中の衛星検出と追跡の自律的手法を光学フローを用いて実装する。
光の流れは、一連の宇宙画像において検出された物体の速度を推定するために用いられる。
検出アルゴリズムは、シミュレートされた恒星画像と衛星の地上画像の両方を用いて実施される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, an autonomous method of satellite detection and tracking in
images is implemented using optical flow. Optical flow is used to estimate the
image velocities of detected objects in a series of space images. Given that
most objects in an image will be stars, the overall image velocity from star
motion is used to estimate the image's frame-to-frame motion. Objects seen to
be moving with velocity profiles distinct from the overall image velocity are
then classified as potential resident space objects. The detection algorithm is
exercised using both simulated star images and ground-based imagery of
satellites. Finally, this algorithm will be tested and compared using a
commercial and an open-source software approach to provide the reader with two
different options based on their need.
- Abstract(参考訳): 本稿では,光学フローを用いて画像中の衛星の検出と追跡を自律的に行う手法を提案する。
光フローは、一連の宇宙画像中の検出された物体の速度を推定するために使用される。
画像内のほとんどの物体が恒星であることを考えると、星の動きの全体像速度は、画像のフレーム間の動きを推定するために用いられる。
全体像速度とは異なる速度プロファイルで移動しているように見える物体は、潜在空間オブジェクトとして分類される。
検出アルゴリズムは、恒星画像と衛星の地上画像の両方を用いて実行される。
最後に、このアルゴリズムは商用およびオープンソースソフトウェアアプローチを使用してテストおよび比較を行い、読者のニーズに応じて2つの選択肢を提供する。
関連論文リスト
- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - Detection of Moving Objects in Earth Observation Satellite Images [0.0]
衛星画像の特定のアーカイブにおける移動物体の検出と速度測定の可能性を評価する。
その結果,一般的な輸送車両,飛行機,車,ボートの移動を検知し,測定できることが示唆された。
論文 参考訳(メタデータ) (2024-05-18T20:55:49Z) - Tracking Everything Everywhere All at Once [111.00807055441028]
ビデオシーケンスから高密度及び長距離運動を推定するための新しいテスト時間最適化法を提案する。
我々はOmniMotionと呼ばれる完全で一貫した動作表現を提案する。
提案手法は,従来の最先端手法よりも定量的にも定性的にも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-06-08T17:59:29Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Satellite Detection in Unresolved Space Imagery for Space Domain
Awareness Using Neural Networks [0.0]
この研究は、MobileNetV2 Convolutional Neural Network (CNN)を用いて、衛星の高速かつ移動的な検出を行う。
カスタムデータベースは、合成衛星画像プログラムの画像を使用して作成され、衛星上の「衛星陽性」画像のバウンディングボックスでラベル付けされる。
CNNは、このデータベース上でトレーニングされ、実際の望遠鏡画像で構成された外部データセット上で、モデルの精度をチェックすることによって、推論が検証される。
論文 参考訳(メタデータ) (2022-07-23T04:28:45Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Particle Videos Revisited: Tracking Through Occlusions Using Point
Trajectories [29.258861811749103]
我々はSandとTellerの"パーティクルビデオ"アプローチを再検討し、長距離モーション推定問題としてピクセル追跡について検討する。
私たちはこの古典的なアプローチを、現在の最先端のフローとオブジェクトトラッキングを駆動するコンポーネントを使って再構築します。
既存の光学フローデータセットから抽出した長距離アモーダル点軌道を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2022-04-08T16:05:48Z) - Rapid Detection of Aircrafts in Satellite Imagery based on Deep Neural
Networks [2.7716102039510564]
本論文では,深層学習技術を用いた衛星画像の航空機検出に焦点をあてる。
本稿では,航空機検出にYOLO深層学習フレームワークを用いた。
改良されたモデルは小さい、回転する、および密集した目的がリアルタイムの条件を満たす異なった未知のイメージのよい正確さそして性能を示します。
論文 参考訳(メタデータ) (2021-04-21T18:13:16Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z) - On Learning Vehicle Detection in Satellite Video [0.0]
空中および衛星画像における車両検出は、リモートセンシング画像の全体像と比較すると、ピクセルの出現が小さいため、依然として困難である。
本研究は,衛星映像における広域動画像(WAMI)の深層学習への応用を提案する。
論文 参考訳(メタデータ) (2020-01-29T15:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。