論文の概要: Generative power of a protein language model trained on multiple
sequence alignments
- arxiv url: http://arxiv.org/abs/2204.07110v1
- Date: Thu, 14 Apr 2022 16:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-15 14:52:07.880545
- Title: Generative power of a protein language model trained on multiple
sequence alignments
- Title(参考訳): 複数配列アライメントで学習したタンパク質言語モデルの生成能力
- Authors: Damiano Sgarbossa, Umberto Lupo and Anne-Florence Bitbol
- Abstract要約: 進化に関連したタンパク質配列の大規模なアンサンブルから始まる計算モデルは、タンパク質ファミリーの表現を捉えている。
MSA Transformerのような複数の配列アライメントに基づいて訓練されたタンパク質言語モデルは、この目的に対して非常に魅力的な候補である。
マスク付き言語モデリングの目的を直接利用して,MSA変換器を用いてシーケンスを生成する反復手法を提案し,検証する。
- 参考スコア(独自算出の注目度): 0.5639904484784126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational models starting from large ensembles of evolutionarily related
protein sequences capture a representation of protein families and learn
constraints associated to protein structure and function. They thus open the
possibility for generating novel sequences belonging to protein families.
Protein language models trained on multiple sequence alignments, such as MSA
Transformer, are highly attractive candidates to this end. We propose and test
an iterative method that directly uses the masked language modeling objective
to generate sequences using MSA Transformer. We demonstrate that the resulting
sequences generally score better than those generated by Potts models, and even
than natural sequences, for homology, coevolution and structure-based measures.
Moreover, MSA Transformer better reproduces the higher-order statistics and the
distribution of sequences in sequence space of natural data than Potts models,
although Potts models better reproduce first- and second-order statistics. MSA
Transformer is thus a strong candidate for protein sequence generation and
protein design.
- Abstract(参考訳): 進化に関連したタンパク質配列の大規模なアンサンブルから始まる計算モデルは、タンパク質ファミリーの表現を捉え、タンパク質の構造と機能に関連する制約を学ぶ。
これにより、タンパク質ファミリーに属する新規な配列を生成する可能性を開く。
MSA Transformerのような複数の配列アライメントに基づいて訓練されたタンパク質言語モデルは、この目的に対して非常に魅力的な候補である。
マスク付き言語モデリングの目的を直接利用して,MSA変換器を用いてシーケンスを生成する反復手法を提案する。
結果列は一般にポッツモデルや自然数列よりも、ホモロジー、共進化、構造に基づく測度において優れていることが示されている。
さらに、MSAトランスフォーマーは、Pottsモデルよりも高階統計と自然データのシーケンス空間におけるシーケンスの分布をよりよく再現するが、Pottsモデルは1階統計と2階統計をよりよく再現する。
したがって、MSAトランスフォーマーはタンパク質配列の生成とタンパク質設計の強力な候補である。
関連論文リスト
- Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
本稿では,タンパク質配列の強い生成および予測能力を示す多目的なタンパク質言語モデルである拡散タンパク質言語モデル(DPLM)を紹介する。
まず, 自己制御型離散拡散確率フレームワークを用いて, 進化的タンパク質配列からのスケーラブルDPLMの事前学習を行った。
プレトレーニング後、DPLMは非条件生成のための構造的に可塑性で新規で多様なタンパク質配列を生成する能力を示す。
論文 参考訳(メタデータ) (2024-02-28T18:57:56Z) - FoldToken: Learning Protein Language via Vector Quantization and Beyond [56.19308144551836]
タンパク質配列構造を離散シンボルとして表現するために textbfFoldTokenizer を導入する。
学習したシンボルを textbfFoldToken と呼び、FoldToken の配列が新しいタンパク質言語として機能する。
論文 参考訳(メタデータ) (2024-02-04T12:18:51Z) - Pairing interacting protein sequences using masked language modeling [0.3222802562733787]
配列アライメントに基づいて訓練されたタンパク質言語モデルを用いて相互作用するタンパク質配列をペア化する手法を開発した。
我々は、MSAトランスフォーマーが、周囲のコンテキストを用いて複数の配列アライメントでマスクされたアミノ酸を埋める能力を利用する。
単一チェーンデータでトレーニングされている間に、チェーン間の共進化をキャプチャできることが示されています。
論文 参考訳(メタデータ) (2023-08-14T13:42:09Z) - PoET: A generative model of protein families as sequences-of-sequences [5.05828899601167]
本稿では,関連タンパク質の集合を配列配列として生成する過程を学習するタンパク質ファミリー全体の生成モデルを提案する。
PoETは検索拡張言語モデルとして使用することができ、任意のタンパク質ファミリーに設定された任意の変更を生成し、スコア付けすることができる。
以上の結果から,PoETはタンパク質言語モデルと進化的配列モデルに優れており,全ての深さのタンパク質をまたいだ変異関数の予測が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-09T16:06:36Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
短い一本鎖RNAとDNA配列(アプタマー)の逆設計は、一連の望ましい基準を満たす配列を見つけるタスクである。
我々は、Pottsモデルとして知られる教師なし機械学習モデルを用いて、制御可能なシーケンスの多様性を持つ新しい有用なシーケンスを発見することを提案する。
論文 参考訳(メタデータ) (2022-08-10T13:30:58Z) - Few Shot Protein Generation [4.7210697296108926]
マルチシークエンスアライメント(MSA)で表されるタンパク質ファミリーに条件付けられたタンパク質配列の生成モデルであるMSA-to-タンパク質トランスフォーマーについて述べる。
タンパク質ファミリーの生成モデルを学習するための既存のアプローチとは異なり、MSA-to-タンパク質トランスフォーマー条件は、多重配列アライメントの学習エンコーディングを直接生成する。
我々の生成的アプローチは、エピスタシスとインデルを正確にモデル化し、他のアプローチとは異なり、正確な推論と効率的なサンプリングを可能にします。
論文 参考訳(メタデータ) (2022-04-03T22:14:02Z) - Protein language models trained on multiple sequence alignments learn
phylogenetic relationships [0.5639904484784126]
MSAトランスフォーマーの行アテンションの単純な組み合わせは、最先端の非教師なし構造接触予測に繋がった。
同様に単純で普遍的なMSAトランスフォーマーのカラムアテンションの組み合わせは、MSAのシーケンス間のハミング距離と強く相関していることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:07:45Z) - Pre-training Co-evolutionary Protein Representation via A Pairwise
Masked Language Model [93.9943278892735]
タンパク質配列表現学習の鍵となる問題は、配列中の残基間の共変量によって反映される共進化情報をキャプチャすることである。
Pairwise Masked Language Model (PMLM) と呼ばれる専用言語モデルによる事前学習により,この情報を直接キャプチャする新しい手法を提案する。
提案手法は, 相互関係を効果的に把握し, ベースラインと比較して, 接触予測性能を最大9%向上できることを示す。
論文 参考訳(メタデータ) (2021-10-29T04:01:32Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - Combination of digital signal processing and assembled predictive models
facilitates the rational design of proteins [0.0]
タンパク質の突然変異の影響を予測することは、タンパク質工学における最も重要な課題の1つである。
符号化段階での物理化学的特性の組み合わせを選択するために,クラスタリング,埋め込み,次元還元技術を用いている。
次に、各プロパティセットで最高のパフォーマンス予測モデルを選択し、組み立てたモデルを作成します。
論文 参考訳(メタデータ) (2020-10-07T16:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。