論文の概要: auton-survival: an Open-Source Package for Regression, Counterfactual
Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data
- arxiv url: http://arxiv.org/abs/2204.07276v1
- Date: Fri, 15 Apr 2022 00:24:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 15:29:30.048248
- Title: auton-survival: an Open-Source Package for Regression, Counterfactual
Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data
- Title(参考訳): auton-survival: Censored Time-to-Event Dataによる回帰、反ファクト推定、評価、表現のためのオープンソースパッケージ
- Authors: Chirag Nagpal, Willa Potosnak and Artur Dubrawski
- Abstract要約: 検閲されたデータの処理を合理化するためのツールのオープンソースリポジトリであるauton-survivalを紹介します。
我々は、複雑な健康問題や疫学的な疑問に答える上で、データサイエンティストを迅速に支援するオートンサバイバルの能力を実証する。
- 参考スコア(独自算出の注目度): 14.928328404160299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications of machine learning in healthcare often require working with
time-to-event prediction tasks including prognostication of an adverse event,
re-hospitalization or death. Such outcomes are typically subject to censoring
due to loss of follow up. Standard machine learning methods cannot be applied
in a straightforward manner to datasets with censored outcomes. In this paper,
we present auton-survival, an open-source repository of tools to streamline
working with censored time-to-event or survival data. auton-survival includes
tools for survival regression, adjustment in the presence of domain shift,
counterfactual estimation, phenotyping for risk stratification, evaluation, as
well as estimation of treatment effects. Through real world case studies
employing a large subset of the SEER oncology incidence data, we demonstrate
the ability of auton-survival to rapidly support data scientists in answering
complex health and epidemiological questions.
- Abstract(参考訳): 医療における機械学習の応用は、しばしば、有害事象の予測、再病院化、死亡など、イベントからイベントへの予測タスクをこなす必要がある。
このような結果は通常、フォローアップの欠如により検閲の対象となる。
標準的な機械学習手法は、検閲された結果のデータセットに簡単に適用することはできない。
本稿では,検閲されたイベント時間やサバイバルデータの処理を合理化するツールのオープンソースリポジトリであるauton-survivalを提案する。
auton-survivalには、生存回帰、ドメインシフトの有無の調整、偽物推定、リスク階層化のための表現型化、評価、治療効果の評価などのツールが含まれている。
実世界のケーススタディでは,SEERオンコロジー発生データの大部分を用いて,複雑な健康や疫学的な疑問に答える上で,データ科学者を迅速に支援するオートサバイバルの能力を示す。
関連論文リスト
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
本稿では,条件付き順序付きランキングネットワークを用いた生存曲線の予測手法であるSurvCORNを提案する。
また,モデル予測の精度を評価するための指標であるSurvMAEを導入する。
論文 参考訳(メタデータ) (2024-09-30T03:01:25Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
CenTimeは、イベントへの時間を直接見積もる、サバイバル分析の新しいアプローチである。
本手法は,非検閲データが少ない場合でも,堅牢なイベント条件検閲機構を特徴とする。
以上の結果から,CenTimeは同等の性能を維持しつつ,死までの時間を予測する上で,最先端のパフォーマンスを提供することがわかった。
論文 参考訳(メタデータ) (2023-09-07T17:07:33Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
本稿では,オントロジーを意識したテンポラリティに基づくコントラシブ・サバイバル(OTCSurv)分析フレームワークを提案する。
OTCSurvは、検閲されたデータと観察されたデータの両方から生存期間を使い、時間的特異性を定義する。
急性腎障害(AKI)を発症する危険のある入院患者のリスクを予測するために,大規模なEHRデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-08-24T22:36:22Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
本稿では, EHRデータを用いた病院内死亡リスク予測のための, 対照的な学習ベース予測ネットワークを提案する。
本研究は, グラフ解析に基づく患者層形成モデルを用いて, 似通った患者をグループ化する手法を提案する。
2つの実世界のEHRデータセットの実験により、我々のアプローチは、計算タスクと予測タスクの両方において最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-19T03:24:34Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
我々は、シーケンシャルデータから、政治以外の評価と学習について研究する。
動的パーソナライズされた価格設定などの問題の因果構造を形式化する。
本報告では,本クラスにおけるアウト・オブ・サンプル・ポリシーの性能改善について述べる。
論文 参考訳(メタデータ) (2021-10-19T16:15:56Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Real-time Prediction for Mechanical Ventilation in COVID-19 Patients
using A Multi-task Gaussian Process Multi-objective Self-attention Network [9.287068570192057]
本報告では, 院内感染患者の機械的換気を要す確率を予測できるロバスト・イン・タイム・予測器を提案する。
新型コロナウイルス患者のリスク予測の課題は、臨床現場で観察された患者のバイタルや検査室の大きなばらつきと不規則なサンプリングにある。
予測タスクを多目的学習フレームワークに設定し、すべての時点におけるリスクスコアを完全に最適化する。
論文 参考訳(メタデータ) (2021-02-01T20:35:22Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。