論文の概要: XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding
- arxiv url: http://arxiv.org/abs/2204.07316v1
- Date: Fri, 15 Apr 2022 03:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 22:12:38.290381
- Title: XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding
- Title(参考訳): XDBERT: 言語理解を改善するために、クロスプラットフォームシステムからBERTに視覚情報を蒸留する
- Authors: Chan-Jan Hsu, Hung-yi Lee and Yu Tsao
- Abstract要約: 本研究では,事前学習したマルチモーダル変換器から事前学習した言語エンコーダへの視覚情報の蒸留について検討する。
我々のフレームワークは,NLUの言語重み特性に適応するために学習目標を変更する一方で,視覚言語タスクにおけるクロスモーダルエンコーダの成功にインスパイアされている。
- 参考スコア(独自算出の注目度): 73.24847320536813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based models are widely used in natural language understanding
(NLU) tasks, and multimodal transformers have been effective in visual-language
tasks. This study explores distilling visual information from pretrained
multimodal transformers to pretrained language encoders. Our framework is
inspired by cross-modal encoders' success in visual-language tasks while we
alter the learning objective to cater to the language-heavy characteristics of
NLU. After training with a small number of extra adapting steps and finetuned,
the proposed XDBERT (cross-modal distilled BERT) outperforms pretrained-BERT in
general language understanding evaluation (GLUE), situations with adversarial
generations (SWAG) benchmarks, and readability benchmarks. We analyze the
performance of XDBERT on GLUE to show that the improvement is likely visually
grounded.
- Abstract(参考訳): トランスフォーマーベースのモデルは自然言語理解(NLU)タスクに広く使われており、マルチモーダルトランスフォーマーは視覚言語タスクに有効である。
本研究では,事前学習したマルチモーダル変換器から事前学習した言語エンコーダへの視覚情報の蒸留について検討する。
我々のフレームワークは,NLUの言語重み特性に適応するために学習目標を変更する一方で,視覚言語タスクにおけるクロスモーダルエンコーダの成功にインスパイアされている。
XDBERT (cross-modal distilled BERT) は, 言語理解評価(GLUE), 逆数世代ベンチマーク(SWAG) ベンチマーク, 可読性ベンチマークにおいて, 事前学習したBERTよりも優れていた。
GLUE上でのXDBERTの性能を解析し,その改善が視覚的に裏付けられていることを示す。
関連論文リスト
- MLAN: Language-Based Instruction Tuning Improves Zero-Shot Generalization of Multimodal Large Language Models [79.0546136194314]
マルチモーダルな大規模言語モデルのゼロショットタスクの一般化を改善するために,新しい命令チューニング手法を提案する。
提案手法の有効性を,言語と視覚の両面にまたがる9つの未知のデータセットに対して評価した。
論文 参考訳(メタデータ) (2024-11-15T20:09:59Z) - Divert More Attention to Vision-Language Object Tracking [87.31882921111048]
大規模な視覚言語アノテートビデオと非効果的な視覚言語対話学習が欠如していることは、トラッキングのためのより効果的な視覚言語表現の設計を動機づけている、と我々は主張する。
本稿では,まず,6つの人気追跡ベンチマークで動画をデコレートする属性アノテーション戦略を提案する。
次に,非対称なアーキテクチャ探索とモダリティミキサー(ModaMixer)を提案する,統一適応型VL表現の学習によるトラッキング向上のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-19T15:22:06Z) - Towards Versatile and Efficient Visual Knowledge Integration into
Pre-trained Language Models with Cross-Modal Adapters [16.44174900423759]
我々は,事前学習された視覚言語モデルで学習した視覚的およびテキスト的知識を活用するために,新しいプラグイン・アンド・プレイ・モジュールであるX-adapterを提案する。
提案手法は,オブジェクト指向推論および自然言語理解タスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-05-12T10:08:46Z) - Accessible Instruction-Following Agent [0.0]
UVLNは、言語間視覚言語ナビゲーションのための新しい機械翻訳命令拡張フレームワークである。
我々は、標準VLNトレーニング目標を言語間エンコーダを介して多言語設定に拡張する。
Room Across Roomデータセットによる実験は、我々のアプローチの有効性を証明する。
論文 参考訳(メタデータ) (2023-05-08T23:57:26Z) - OmDet: Large-scale vision-language multi-dataset pre-training with
multimodal detection network [17.980765138522322]
この研究は、新しい言語対応のオブジェクト検出アーキテクチャであるOmDetを紹介した。
自然言語を普遍的な知識表現として活用することで、OmDetは多様なデータセットから"視覚語彙"を蓄積する。
我々は,OmDetが野生におけるオブジェクト検出,オープンボキャブラリ検出,句接地において,強いベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-10T14:25:14Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z) - DIET: Lightweight Language Understanding for Dialogue Systems [0.0]
大規模な事前学習型言語モデルは、GLUEやSuperGLUEのような言語理解ベンチマークにおいて、驚くべき結果を示している。
本稿では,Dual Intent and Entity Transformer (DIET)アーキテクチャを導入し,意図と実体予測に対する事前学習表現の有効性について検討する。
論文 参考訳(メタデータ) (2020-04-21T12:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。