A Differentially Private Probabilistic Framework for Modeling the
Variability Across Federated Datasets of Heterogeneous Multi-View
Observations
- URL: http://arxiv.org/abs/2204.07352v1
- Date: Fri, 15 Apr 2022 07:20:47 GMT
- Title: A Differentially Private Probabilistic Framework for Modeling the
Variability Across Federated Datasets of Heterogeneous Multi-View
Observations
- Authors: Irene Balelli, Santiago Silva and Marco Lorenzi
- Abstract summary: We show that our framework can be effectively optimized through expectation (EM) over latent master's distribution and clients' parameters.
We tested our method on the analysis of multi-modal medical imaging data and clinical scores from distributed clinical datasets of patients affected by Alzheimer's disease.
- Score: 4.511923587827301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel federated learning paradigm to model data variability
among heterogeneous clients in multi-centric studies. Our method is expressed
through a hierarchical Bayesian latent variable model, where client-specific
parameters are assumed to be realization from a global distribution at the
master level, which is in turn estimated to account for data bias and
variability across clients. We show that our framework can be effectively
optimized through expectation maximization (EM) over latent master's
distribution and clients' parameters. We also introduce formal differential
privacy (DP) guarantees compatibly with our EM optimization scheme. We tested
our method on the analysis of multi-modal medical imaging data and clinical
scores from distributed clinical datasets of patients affected by Alzheimer's
disease. We demonstrate that our method is robust when data is distributed
either in iid and non-iid manners, even when local parameters perturbation is
included to provide DP guarantees. Moreover, the variability of data, views and
centers can be quantified in an interpretable manner, while guaranteeing
high-quality data reconstruction as compared to state-of-the-art autoencoding
models and federated learning schemes. The code is available at
https://gitlab.inria.fr/epione/federated-multi-views-ppca.
Related papers
- Distributionally Robust Clustered Federated Learning: A Case Study in Healthcare [9.433126190164224]
We introduce a novel algorithm, which we term Cross-silo Robust Clustered Federated Learning (CS-RCFL)
We construct ambiguity sets around each client's empirical distribution that capture possible distribution shifts in the local data.
We then propose a model-agnostic integer fractional program to determine the optimal distributionally robust clustering of clients into coalitions.
arXiv Detail & Related papers (2024-10-09T16:25:01Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Exploratory Analysis of Federated Learning Methods with Differential
Privacy on MIMIC-III [0.7349727826230862]
Federated learning methods offer the possibility of training machine learning models on privacy-sensitive data sets.
We present an evaluation of the impact of different federation and differential privacy techniques when training models on the open-source MIMIC-III dataset.
arXiv Detail & Related papers (2023-02-08T17:27:44Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model.
In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models.
Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy.
arXiv Detail & Related papers (2022-07-07T17:25:04Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.