Political Communities on Twitter: Case Study of the 2022 French
Presidential Election
- URL: http://arxiv.org/abs/2204.07436v1
- Date: Fri, 15 Apr 2022 12:18:16 GMT
- Title: Political Communities on Twitter: Case Study of the 2022 French
Presidential Election
- Authors: Hadi Abdine, Yanzhu Guo, Virgile Rennard, Michalis Vazirgiannis
- Abstract summary: We aim to identify political communities formed on Twitter during the 2022 French presidential election.
We create a large-scale Twitter dataset containing 1.2 million users and 62.6 million tweets that mention keywords relevant to the election.
We perform community detection on a retweet graph of users and propose an in-depth analysis of the stance of each community.
- Score: 14.783829037950984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the significant increase in users on social media platforms, a new means
of political campaigning has appeared. Twitter and Facebook are now notable
campaigning tools during elections. Indeed, the candidates and their parties
now take to the internet to interact and spread their ideas. In this paper, we
aim to identify political communities formed on Twitter during the 2022 French
presidential election and analyze each respective community. We create a
large-scale Twitter dataset containing 1.2 million users and 62.6 million
tweets that mention keywords relevant to the election. We perform community
detection on a retweet graph of users and propose an in-depth analysis of the
stance of each community. Finally, we attempt to detect offensive tweets and
automatic bots, comparing across communities in order to gain insight into each
candidate's supporter demographics and online campaign strategy.
Related papers
- Russo-Ukrainian War: Prediction and explanation of Twitter suspension [47.61306219245444]
This study focuses on the Twitter suspension mechanism and the analysis of shared content and features of user accounts that may lead to this.
We have obtained a dataset containing 107.7M tweets, originating from 9.8 million users, using Twitter API.
Our results reveal scam campaigns taking advantage of trending topics regarding the Russia-Ukrainian conflict for Bitcoin fraud, spam, and advertisement campaigns.
arXiv Detail & Related papers (2023-06-06T08:41:02Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - The impact of Twitter on political influence on the choice of a running
mate: Social Network Analysis and Semantic Analysis -- A Review [0.0]
Politics is one of the most talked-about and popular topics on social media networks right now.
Many politicians use micro-blogging services like Twitter because they have a large number of followers and supporters on those networks.
This research is a review on the use of social network analysis (SNA) and semantic analysis (SA) on the Twitter platform to study the supporters networks of political leaders.
arXiv Detail & Related papers (2022-07-31T17:44:57Z) - Retweet-BERT: Political Leaning Detection Using Language Features and
Information Diffusion on Social Networks [30.143148646797265]
We introduce Retweet-BERT, a simple and scalable model to estimate the political leanings of Twitter users.
Our assumptions stem from patterns of networks and linguistics homophily among people who share similar ideologies.
arXiv Detail & Related papers (2022-07-18T02:18:20Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Research into influence campaigns on Twitter has mostly relied on identifying malicious activities from tweets obtained via public APIs.
Here, we provide the first exhaustive, large-scale analysis of anomalous deletion patterns involving more than a billion deletions by over 11 million accounts.
We find that a small fraction of accounts delete a large number of tweets daily.
First, limits on tweet volume are circumvented, allowing certain accounts to flood the network with over 26 thousand daily tweets.
Second, coordinated networks of accounts engage in repetitive likes and unlikes of content that is eventually deleted, which can manipulate ranking algorithms.
arXiv Detail & Related papers (2022-03-25T20:07:08Z) - Negativity Spreads Faster: A Large-Scale Multilingual Twitter Analysis
on the Role of Sentiment in Political Communication [7.136205674624813]
This paper attempts to analyse tweets of politicians from three European countries.
By utilising state-of-the-art pre-trained language models, we performed sentiment analysis on hundreds of thousands of tweets.
Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times.
arXiv Detail & Related papers (2022-02-01T13:25:19Z) - Engaging Politically Diverse Audiences on Social Media [11.786863362728868]
We study how political polarization is reflected in the social media posts used by media outlets to promote their content online.
We build a tool that integrates our model and helps journalists craft tweets that are engaging to a politically diverse audience.
arXiv Detail & Related papers (2021-11-04T05:58:49Z) - Shifting Polarization and Twitter News Influencers between two U.S.
Presidential Elections [92.33485580547801]
We analyze the change of polarization between the 2016 and 2020 U.S. presidential elections.
Most of the top influencers were affiliated with media organizations during both elections.
75% of the top influencers in 2020 were not present in 2016, demonstrating that such status is difficult to retain.
arXiv Detail & Related papers (2021-11-03T20:08:54Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Inferring Political Preferences from Twitter [0.0]
Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate.
During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians.
In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning.
arXiv Detail & Related papers (2020-07-21T05:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.