Sensitivity of sparse codes to image distortions
- URL: http://arxiv.org/abs/2204.07466v1
- Date: Fri, 15 Apr 2022 13:58:00 GMT
- Title: Sensitivity of sparse codes to image distortions
- Authors: Kyle Luther, H. Sebastian Seung
- Abstract summary: We show that sparse codes can be very sensitive to image distortions.
The sensitivity is due to the existence of linear combinations of active dictionary elements with high cancellation.
- Score: 4.209801809583906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse coding has been proposed as a theory of visual cortex and as an
unsupervised algorithm for learning representations. We show empirically with
the MNIST dataset that sparse codes can be very sensitive to image distortions,
a behavior that may hinder invariant object recognition. A locally linear
analysis suggests that the sensitivity is due to the existence of linear
combinations of active dictionary elements with high cancellation. A nearest
neighbor classifier is shown to perform worse on sparse codes than original
images. For a linear classifier with a sufficiently large number of labeled
examples, sparse codes are shown to yield higher accuracy than original images,
but no higher than a representation computed by a random feedforward net.
Sensitivity to distortions seems to be a basic property of sparse codes, and
one should be aware of this property when applying sparse codes to invariant
object recognition.
Related papers
- Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
This paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning.
Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations.
arXiv Detail & Related papers (2023-05-30T01:38:54Z) - SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA [0.6770292596301478]
We introduce a new VAE variant, termed sparse coding-based VAE with learned ISTA (SC-VAE), which integrates sparse coding within variational autoencoder framework.
Experiments on two image datasets demonstrate that our model achieves improved image reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-03-29T13:18:33Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
We show that conventional neural network classifiers can generate high-quality images comparable to state-of-the-art generative models.
We propose a mask-based reconstruction module to make semantic gradients-aware to synthesize plausible images.
We show that our method is also applicable to text-to-image generation by regarding image-text foundation models.
arXiv Detail & Related papers (2022-11-27T11:25:35Z) - Dictionary Learning with Uniform Sparse Representations for Anomaly
Detection [2.277447144331876]
We study how dictionary learning (DL) performs in detecting abnormal samples in a dataset of signals.
Numerical simulations show that one can efficiently use this resulted subspace to discriminate the anomalies over the regular data points.
arXiv Detail & Related papers (2022-01-11T10:22:46Z) - Sparse Coding with Multi-Layer Decoders using Variance Regularization [19.8572592390623]
We propose a novel sparse coding protocol which prevents a collapse in the codes without the need to regularize the decoder.
Our method regularizes the codes directly so that each latent code component has variance greater than a fixed threshold.
We show that sparse autoencoders with multi-layer decoders trained using our variance regularization method produce higher quality reconstructions with sparser representations.
arXiv Detail & Related papers (2021-12-16T21:46:23Z) - Inverse Problems Leveraging Pre-trained Contrastive Representations [88.70821497369785]
We study a new family of inverse problems for recovering representations of corrupted data.
We propose a supervised inversion method that uses a contrastive objective to obtain excellent representations for highly corrupted images.
Our method outperforms end-to-end baselines even with a fraction of the labeled data in a wide range of forward operators.
arXiv Detail & Related papers (2021-10-14T15:06:30Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
Anomalies in images occur in various scales from a small hole on a carpet to a large stain.
One of the widely used anomaly detection methods, sparse coding, has an issue in dealing with anomalies that are out of the patch size employed to sparsely represent images.
We propose to incorporate multi-scale features to sparse coding and improve the performance of anomaly detection.
arXiv Detail & Related papers (2021-04-09T10:20:34Z) - Adversarial Robustness Across Representation Spaces [35.58913661509278]
Adversa robustness corresponds to the susceptibility of deep neural networks to imperceptible perturbations made at test time.
In this work we extend the setting to consider the problem of training of deep neural networks that can be made simultaneously robust to perturbations applied in multiple natural representation spaces.
arXiv Detail & Related papers (2020-12-01T19:55:58Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.