Improving Deep Representation Learning via Auxiliary Learnable Target Coding
- URL: http://arxiv.org/abs/2305.18680v2
- Date: Thu, 29 Aug 2024 02:22:08 GMT
- Title: Improving Deep Representation Learning via Auxiliary Learnable Target Coding
- Authors: Kangjun Liu, Ke Chen, Kui Jia, Yaowei Wang,
- Abstract summary: This paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning.
Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations.
- Score: 69.79343510578877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep representation learning is a subfield of machine learning that focuses on learning meaningful and useful representations of data through deep neural networks. However, existing methods for semantic classification typically employ pre-defined target codes such as the one-hot and the Hadamard codes, which can either fail or be less flexible to model inter-class correlation. In light of this, this paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning, which can not only incorporate latent dependency across classes but also impose geometric properties of target codes into representation space. Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations owing to enlarging between-class margins in representation space and favoring equal semantic correlation of learnable target codes respectively. Experimental results on several popular visual classification and retrieval benchmarks can demonstrate the effectiveness of our method on improving representation learning, especially for imbalanced data. Source codes are made publicly available at \href{https://github.com/AkonLau/LTC}{https://github.com/AkonLau/LTC}.
Related papers
- Beyond Prototypes: Semantic Anchor Regularization for Better
Representation Learning [82.29761875805369]
One of the ultimate goals of representation learning is to achieve compactness within a class and well-separability between classes.
We propose a novel perspective to use pre-defined class anchors serving as feature centroid to unidirectionally guide feature learning.
The proposed Semantic Anchor Regularization (SAR) can be used in a plug-and-play manner in the existing models.
arXiv Detail & Related papers (2023-12-19T05:52:38Z) - Gramian Attention Heads are Strong yet Efficient Vision Learners [26.79263390835444]
We introduce a novel architecture design that enhances expressiveness by incorporating multiple head classifiers (ie, classification heads)
Our approach employs attention-based aggregation, utilizing pairwise feature similarity to enhance multiple lightweight heads with minimal resource overhead.
Our models eventually surpass state-of-the-art CNNs and ViTs regarding the accuracy-grained trade-off on ImageNet-1K.
arXiv Detail & Related papers (2023-10-25T09:08:58Z) - Convolutional Fine-Grained Classification with Self-Supervised Target
Relation Regularization [34.8793946023412]
This paper introduces a novel target coding scheme -- dynamic target relation graphs (DTRG)
Online computation of class-level feature centers is designed to generate cross-category distance in the representation space.
The proposed target graphs can alleviate data sparsity and imbalanceness in representation learning.
arXiv Detail & Related papers (2022-08-03T11:51:53Z) - Integrating Language Guidance into Vision-based Deep Metric Learning [78.18860829585182]
We propose to learn metric spaces which encode semantic similarities as embedding space.
These spaces should be transferable to classes beyond those seen during training.
This causes learned embedding spaces to encode incomplete semantic context and misrepresent the semantic relation between classes.
arXiv Detail & Related papers (2022-03-16T11:06:50Z) - A Framework to Enhance Generalization of Deep Metric Learning methods
using General Discriminative Feature Learning and Class Adversarial Neural
Networks [1.5469452301122175]
Metric learning algorithms aim to learn a distance function that brings semantically similar data items together and keeps dissimilar ones at a distance.
Deep Metric Learning (DML) methods are proposed that automatically extract features from data and learn a non-linear transformation from input space to a semantically embedding space.
We propose a framework to enhance the generalization power of existing DML methods in a Zero-Shot Learning (ZSL) setting.
arXiv Detail & Related papers (2021-06-11T14:24:40Z) - Self-supervised asymmetric deep hashing with margin-scalable constraint
for image retrieval [3.611160663701664]
We propose a novel self-supervised asymmetric deep hashing method with a margin-scalable constraint(SADH) approach for image retrieval.
SADH implements a self-supervised network to preserve semantic information in a semantic feature map and a semantic code map for the semantics of the given dataset.
For the feature learning part, a new margin-scalable constraint is employed for both highly-accurate construction of pairwise correlations in the hamming space and a more discriminative hash code representation.
arXiv Detail & Related papers (2020-12-07T16:09:37Z) - Learning and Exploiting Interclass Visual Correlations for Medical Image
Classification [30.88175218665726]
We present the Class-Correlation Learning Network (CCL-Net) to learn interclass visual correlations from given training data.
Instead of letting the network directly learn the desired correlations, we propose to learn them implicitly via distance metric learning of class-specific embeddings.
An intuitive loss based on a geometrical explanation of correlation is designed for bolstering learning of the interclass correlations.
arXiv Detail & Related papers (2020-07-13T13:31:38Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
Graph representation learning has attracted much attention in supporting high quality candidate search at scale.
Despite its effectiveness in learning embedding vectors for objects in the user-item interaction network, the computational costs to infer users' preferences in continuous embedding space are tremendous.
We propose a simple yet effective discrete representation learning framework to jointly learn continuous and discrete codes.
arXiv Detail & Related papers (2020-03-04T06:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.