Multi-Frame Self-Supervised Depth with Transformers
- URL: http://arxiv.org/abs/2204.07616v1
- Date: Fri, 15 Apr 2022 19:04:57 GMT
- Title: Multi-Frame Self-Supervised Depth with Transformers
- Authors: Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien
Gaidon
- Abstract summary: We propose a novel transformer architecture for cost volume generation.
We use depth-discretized epipolar sampling to select matching candidates.
We refine predictions through a series of self- and cross-attention layers.
- Score: 33.00363651105475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-frame depth estimation improves over single-frame approaches by also
leveraging geometric relationships between images via feature matching, in
addition to learning appearance-based features. In this paper we revisit
feature matching for self-supervised monocular depth estimation, and propose a
novel transformer architecture for cost volume generation. We use
depth-discretized epipolar sampling to select matching candidates, and refine
predictions through a series of self- and cross-attention layers. These layers
sharpen the matching probability between pixel features, improving over
standard similarity metrics prone to ambiguities and local minima. The refined
cost volume is decoded into depth estimates, and the whole pipeline is trained
end-to-end from videos using only a photometric objective. Experiments on the
KITTI and DDAD datasets show that our DepthFormer architecture establishes a
new state of the art in self-supervised monocular depth estimation, and is even
competitive with highly specialized supervised single-frame architectures. We
also show that our learned cross-attention network yields representations
transferable across datasets, increasing the effectiveness of pre-training
strategies. Project page: https://sites.google.com/tri.global/depthformer
Related papers
- Self-supervised Monocular Depth Estimation with Large Kernel Attention [30.44895226042849]
We propose a self-supervised monocular depth estimation network to get finer details.
Specifically, we propose a decoder based on large kernel attention, which can model long-distance dependencies.
Our method achieves competitive results on the KITTI dataset.
arXiv Detail & Related papers (2024-09-26T14:44:41Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - SwinDepth: Unsupervised Depth Estimation using Monocular Sequences via
Swin Transformer and Densely Cascaded Network [29.798579906253696]
It is challenging to acquire dense ground truth depth labels for supervised training, and the unsupervised depth estimation using monocular sequences emerges as a promising alternative.
In this paper, we employ a convolution-free Swin Transformer as an image feature extractor so that the network can capture both local geometric features and global semantic features for depth estimation.
Also, we propose a Densely Cascaded Multi-scale Network (DCMNet) that connects every feature map directly with another from different scales via a top-down cascade pathway.
arXiv Detail & Related papers (2023-01-17T06:01:46Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
We present a novel lightweight Edge Guided Depth Estimation Network (EGD-Net)
In particular, we start out with a lightweight encoder-decoder architecture and embed an edge guidance branch.
In order to aggregate the context information and edge attention features, we design a transformer-based feature aggregation module.
arXiv Detail & Related papers (2022-09-29T14:45:47Z) - Depthformer : Multiscale Vision Transformer For Monocular Depth
Estimation With Local Global Information Fusion [6.491470878214977]
This paper benchmarks various transformer-based models for the depth estimation task on an indoor NYUV2 dataset and an outdoor KITTI dataset.
We propose a novel attention-based architecture, Depthformer for monocular depth estimation.
Our proposed method improves the state-of-the-art by 3.3%, and 3.3% respectively in terms of Root Mean Squared Error (RMSE)
arXiv Detail & Related papers (2022-07-10T20:49:11Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Don't Forget The Past: Recurrent Depth Estimation from Monocular Video [92.84498980104424]
We put three different types of depth estimation into a common framework.
Our method produces a time series of depth maps.
It can be applied to monocular videos only or be combined with different types of sparse depth patterns.
arXiv Detail & Related papers (2020-01-08T16:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.