A Novel Convolutional-Free Method for 3D Medical Imaging Segmentation
- URL: http://arxiv.org/abs/2502.05396v1
- Date: Sat, 08 Feb 2025 00:52:45 GMT
- Title: A Novel Convolutional-Free Method for 3D Medical Imaging Segmentation
- Authors: Canxuan Gang,
- Abstract summary: Convolutional neural networks (CNNs) have dominated the field, achieving significant success in 3D medical image segmentation.
Recent transformer-based models, such as TransUNet and nnFormer, have demonstrated promise in addressing these limitations.
This paper introduces a novel, fully convolutional-free model based on transformer architecture and self-attention mechanisms.
- Score: 0.0
- License:
- Abstract: Segmentation of 3D medical images is a critical task for accurate diagnosis and treatment planning. Convolutional neural networks (CNNs) have dominated the field, achieving significant success in 3D medical image segmentation. However, CNNs struggle with capturing long-range dependencies and global context, limiting their performance, particularly for fine and complex structures. Recent transformer-based models, such as TransUNet and nnFormer, have demonstrated promise in addressing these limitations, though they still rely on hybrid CNN-transformer architectures. This paper introduces a novel, fully convolutional-free model based on transformer architecture and self-attention mechanisms for 3D medical image segmentation. Our approach focuses on improving multi-semantic segmentation accuracy and addressing domain adaptation challenges between thick and thin slice CT images. We propose a joint loss function that facilitates effective segmentation of thin slices based on thick slice annotations, overcoming limitations in dataset availability. Furthermore, we present a benchmark dataset for multi-semantic segmentation on thin slices, addressing a gap in current medical imaging research. Our experiments demonstrate the superiority of the proposed model over traditional and hybrid architectures, offering new insights into the future of convolution-free medical image segmentation.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Dynamic Linear Transformer for 3D Biomedical Image Segmentation [2.440109381823186]
Transformer-based neural networks have surpassed promising performance on many biomedical image segmentation tasks.
Main challenge for 3D transformer-based segmentation methods is the quadratic complexity introduced by the self-attention mechanism.
We propose a novel transformer architecture for 3D medical image segmentation using an encoder-decoder style architecture with linear complexity.
arXiv Detail & Related papers (2022-06-01T21:15:01Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
We propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR)
The model extracts features at five different resolutions by utilizing shifted windows for computing self-attention.
We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase.
arXiv Detail & Related papers (2022-01-04T18:01:34Z) - D-Former: A U-shaped Dilated Transformer for 3D Medical Image
Segmentation [7.635663740358682]
We propose a new method called Dilated Transformer, which conducts self-attention for pair-wise patch relations captured alternately in local and global scopes.
Inspired by dilated convolution kernels, we conduct the global self-attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing computational costs.
arXiv Detail & Related papers (2022-01-03T03:20:35Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.