論文の概要: On the Origin of Hallucinations in Conversational Models: Is it the
Datasets or the Models?
- arxiv url: http://arxiv.org/abs/2204.07931v1
- Date: Sun, 17 Apr 2022 05:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 14:28:57.184170
- Title: On the Origin of Hallucinations in Conversational Models: Is it the
Datasets or the Models?
- Title(参考訳): 会話モデルにおける幻覚の起源について:それはデータセットかモデルか?
- Authors: Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, Siva Reddy
- Abstract要約: 既存の知識基盤型対話型ベンチマークといくつかの最先端モデルについて検討する。
標準ベンチマークは60%以上の幻覚応答で構成されており、幻覚だけでなく幻覚を増幅するモデルにつながっている。
この結果から,既存のデータセットやモデルの品質に関する重要な疑問が浮かび上がっている。
- 参考スコア(独自算出の注目度): 32.41234580068662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge-grounded conversational models are known to suffer from producing
factually invalid statements, a phenomenon commonly called hallucination. In
this work, we investigate the underlying causes of this phenomenon: is
hallucination due to the training data, or to the models? We conduct a
comprehensive human study on both existing knowledge-grounded conversational
benchmarks and several state-of-the-art models. Our study reveals that the
standard benchmarks consist of >60% hallucinated responses, leading to models
that not only hallucinate but even amplify hallucinations. Our findings raise
important questions on the quality of existing datasets and models trained
using them. We make our annotations publicly available for future research.
- Abstract(参考訳): 知識に基づく会話モデルは、幻覚と呼ばれる現象である事実的に無効な言明の生成に苦しむことが知られている。
本研究では,この現象の根本原因について考察する。幻覚はトレーニングデータによるものか,モデルによるものなのか?
既存の知識基盤の会話ベンチマークといくつかの最先端モデルの両方について、包括的な人間研究を行う。
我々の研究では、標準ベンチマークが60%以上の幻覚反応から成り、幻覚だけでなく、幻覚を増幅するモデルに繋がることが明らかになった。
この結果から,既存のデータセットやモデルの品質に関する重要な疑問が浮かび上がっている。
今後の研究のためにアノテーションを公開します。
関連論文リスト
- Distinguishing Ignorance from Error in LLM Hallucinations [43.62904897907926]
我々は,2種類の幻覚の区別について,これまでの研究が完全には対応していない,クローズブック質問回答(CBQA)に焦点を当てた。
これらの症例の鑑別は幻覚の検出と緩和に不可欠である。
論文 参考訳(メタデータ) (2024-10-29T14:31:33Z) - Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models [65.32990889402927]
「我々はこの現象を知識の誇張として造る。」
その結果, 幻覚率の増大は, 不均衡比と支配的条件記述の長さに左右されることがわかった。
本稿では,その発生前に幻覚をキャッチするための信号として,オーバーシェーディング条件を用いることを提案する。
論文 参考訳(メタデータ) (2024-07-10T20:37:42Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
本稿では,大規模ビデオ言語モデル(LVLM)における幻覚検出のための最初の総合的ベンチマークであるVideoHallucerを紹介する。
VideoHallucerは幻覚を2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-06-24T06:21:59Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
大規模な言語モデルはファクトイドの質問に答えることに成功したが、幻覚を起こす傾向がある。
正しい解答知識を持つLLMの現象を推論力学の観点から検討する。
我々の研究は、LLMの幻覚が既知の事実について、そしてより重要なのは、幻覚を正確に予測する理由を理解することに光を当てた。
論文 参考訳(メタデータ) (2024-03-29T06:48:30Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
大規模な言語モデルは、馴染みのないクエリに直面した時に幻覚化することが知られている。
モデルの微調整データの見慣れない例は、これらのエラーを形作るのに不可欠である。
本研究は,RLファインタニング戦略をさらに研究し,長大なモデル生成の現実性を改善することを目的とする。
論文 参考訳(メタデータ) (2024-03-08T18:28:13Z) - Hallucinations in Neural Automatic Speech Recognition: Identifying
Errors and Hallucinatory Models [11.492702369437785]
幻覚は、ソースの発声とは意味的に無関係であるが、それでも流動的でコヒーレントである。
単語誤り率などの一般的なメトリクスは、幻覚モデルと非幻覚モデルとを区別できないことを示す。
本研究は,幻覚を識別する枠組みを考案し,その意味的関係と基礎的真理と流布との関係を解析する。
論文 参考訳(メタデータ) (2024-01-03T06:56:56Z) - HALO: An Ontology for Representing and Categorizing Hallucinations in Large Language Models [2.9312156642007294]
Hallucination Ontology (HALO) はOWLで書かれており、大きな言語モデル(LLM)で見られる6種類の幻覚をサポートしている。
我々は,複数の独立したWebソースに対して帰納的に収集した幻覚を含むデータセットを公開し,このデータセットをモデル化し,有能な質問に答えるためにHALOをうまく利用できることを示す。
論文 参考訳(メタデータ) (2023-12-08T17:57:20Z) - Evaluating Hallucinations in Chinese Large Language Models [65.4771562909392]
我々は,中国大言語モデルにおける幻覚現象を測定するために,HaluQA(中国語幻覚質問回答)というベンチマークを構築した。
GLM-130B と ChatGPT の2種類の幻覚について考察した。
評価のために,モデル出力が幻覚的かどうかを判定するために,GPT-4を用いた自動評価手法を設計する。
論文 参考訳(メタデータ) (2023-10-05T07:57:09Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。