Understanding Modified Two-Slit Experiments using Path Markers
- URL: http://arxiv.org/abs/2204.08062v1
- Date: Sun, 17 Apr 2022 18:32:14 GMT
- Title: Understanding Modified Two-Slit Experiments using Path Markers
- Authors: Tabish Qureshi
- Abstract summary: Some modified two-slit interference experiments were carried out showing an apparent paradox in wave-particle duality.
The polarization at the two detectors shows that the photons which give rise to interference, and reach a particular detector, always come from both the slits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some modified two-slit interference experiments were carried out showing an
apparent paradox in wave-particle duality. In a typical such experiment, the
screen, where the interference pattern is supposed to be formed, is replaced by
a converging lens. The converging lens forms the images of the two slits at two
spatially separated detectors. It was claimed that each of these two detectors
give information about which slit a photon came from, even though they come
from the region of interference. These experiments generated a lot of debate.
Their various refutations were largely philosophical in nature, pointing out
that the controversial claims involved some questionable assumptions. Here such
an experiment is theoretically analyzed by introducing path markers which are
two orthogonal polarization states of the photon. Analyzing the polarization at
the two detectors shows that the photons which give rise to interference, and
reach a particular detector, always come from both the slits. This provides
clarity in understanding such experiments, without resorting to any
philosophical arguments.
Related papers
- Young's Double-Slit Interference Demonstration with Single Photons [0.0]
The interference of single photons going through a double slit is a compelling demonstration of the wave and particle nature of light.
We present a tabletop laboratory arrangement suitable for the undergraduate instruction laboratory that overcomes these challenges.
arXiv Detail & Related papers (2024-01-04T16:46:57Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Multi-photon interference phenomena [0.0]
I show that three-photon interference is governed by four parameters and measure three-photon interference independent of two-photon interference.
I demonstrate that even when the states of the photons are highly distinguishable they can still exhibit strong quantum interference.
I present a new framework to describe multi-photon interference in terms of a graph-theoretical approach.
arXiv Detail & Related papers (2022-09-07T02:43:18Z) - Boson bunching is not maximized by indistinguishable particles [0.0]
Boson bunching is one of the most remarkable features of quantum physics.
We disproof the link between indistinguishability and bunching by exploiting a recent finding in the theory of matrix permanents.
This unexpected behavior questions our understanding of multiparticle interference in the grey zone between indistinguishable bosons and classical particles.
arXiv Detail & Related papers (2022-03-02T18:50:48Z) - Experimental Higher-Order Interference in a Nonlinear Triple Slit [50.591267188664666]
We experimentally show that nonlinear evolution can in fact lead to higher-order interference.
Our work shows that nonlinear evolution could open a loophole for experiments attempting to verify Born's rule by ruling out higher-order interference.
arXiv Detail & Related papers (2021-12-13T19:05:38Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z) - Interfering distinguishable photons [0.0]
It is assumed that distinguishing information in the preparation, evolution or measurement of a system is sufficient to destroy interference.
For more than three independent quantum particles, distinguishability of the prepared states is not a sufficient condition for multiparticle interference to disappear.
arXiv Detail & Related papers (2020-01-22T16:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.