論文の概要: Active Learning with Weak Supervision for Gaussian Processes
- arxiv url: http://arxiv.org/abs/2204.08335v3
- Date: Fri, 16 Aug 2024 16:40:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 21:24:14.513570
- Title: Active Learning with Weak Supervision for Gaussian Processes
- Title(参考訳): 弱スーパービジョンによるガウス過程のアクティブラーニング
- Authors: Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten,
- Abstract要約: 得られたアノテーションの精度を選択する能動的学習アルゴリズムを提案する。
アクティブな学習ループにおいて,アノテーションの精度を調整できることのメリットを実証的に示す。
- 参考スコア(独自算出の注目度): 12.408125305560274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotating data for supervised learning can be costly. When the annotation budget is limited, active learning can be used to select and annotate those observations that are likely to give the most gain in model performance. We propose an active learning algorithm that, in addition to selecting which observation to annotate, selects the precision of the annotation that is acquired. Assuming that annotations with low precision are cheaper to obtain, this allows the model to explore a larger part of the input space, with the same annotation budget. We build our acquisition function on the previously proposed BALD objective for Gaussian Processes, and empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.
- Abstract(参考訳): 教師付き学習のためのデータアノテーションはコストがかかる。
アノテーションの予算が限られている場合、アクティブな学習は、モデルのパフォーマンスにおいて最も利益を得られるであろう観察を選定し、注釈付けするために使用することができる。
そこで本研究では,アノテートする観測項目の選択に加えて,取得したアノテーションの精度を選択する能動的学習アルゴリズムを提案する。
精度の低いアノテーションが手に入ると仮定すると、同じアノテーション予算で入力空間の大部分を探索することができる。
提案したガウス過程のBALD目標に基づいて獲得関数を構築し、アクティブ学習ループにおけるアノテーションの精度を調整できることの利点を実証的に実証する。
関連論文リスト
- Zero-shot Active Learning Using Self Supervised Learning [11.28415437676582]
我々は,反復的なプロセスを必要としないモデル非依存の新たなアクティブラーニング手法を提案する。
アクティブラーニングの課題に自己指導型学習機能を活用することを目的としている。
論文 参考訳(メタデータ) (2024-01-03T11:49:07Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - FOCAL: A Cost-Aware Video Dataset for Active Learning [13.886774655927875]
アノテーションコストとは、アノテータが与えられたビデオシーケンスのラベル付けと品質保証に要する時間を指す。
本稿では,ビデオデータのシーケンシャルな構造を利用する共形能動学習アルゴリズムを提案する。
共形能動学習法は,従来の能動能動学習法よりも113時間も安価であることを示す。
論文 参考訳(メタデータ) (2023-11-17T15:46:09Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - Deep Active Learning with Noisy Oracle in Object Detection [5.5165579223151795]
ディープオブジェクト検出のためのラベルレビューモジュールを含む複合能動学習フレームワークを提案する。
アクティブなデータセットで部分的にノイズの多いアノテーションを修正するためにアノテーションの予算の一部を利用することで、モデルの性能が早期に向上することを示します。
本実験では,同一のアノテーション予算でラベルレビューを組み込むことで,最大4.5mAPポイントのオブジェクト検出性能の向上を実現した。
論文 参考訳(メタデータ) (2023-09-30T13:28:35Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
本稿では、このような補助データアノテーションの新しい代替手段として、入力テキストのペア間のタスク固有の嗜好について検討する。
本稿では、与えられた分類課題と補助的選好の両方を学ぶことの協調効果を享受できる、P2Cと呼ばれる新しいマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T04:04:47Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
ディープラーニングでは、アクティブな学習は通常、微調整によって連続した深層モデルを更新する反復的なプロセスとして実装される。
移行学習にインスパイアされたアプローチを用いてこの問題に対処する。
本稿では,ALプロセスの反復性を利用してより堅牢なサンプルを抽出する新しい取得関数を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:53:10Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Active Learning for Coreference Resolution using Discrete Annotation [76.36423696634584]
我々は、コア参照解決におけるアクティブラーニングのためのペアワイズアノテーションを改善した。
提案された参照ペアがコアフェレントでないと判断された場合、アノテータに参照アンテセントを識別するよう依頼する。
既存のベンチマークコアベンチマークデータセットを用いた実験では、この追加質問からの信号が人間のアノテーション時間当たりの大幅なパフォーマンス向上につながることが示された。
論文 参考訳(メタデータ) (2020-04-28T17:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。