Active Learning with Weak Supervision for Gaussian Processes
- URL: http://arxiv.org/abs/2204.08335v3
- Date: Fri, 16 Aug 2024 16:40:52 GMT
- Title: Active Learning with Weak Supervision for Gaussian Processes
- Authors: Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten,
- Abstract summary: We propose an active learning algorithm that selects the precision of the annotation that is acquired.
We empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.
- Score: 12.408125305560274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotating data for supervised learning can be costly. When the annotation budget is limited, active learning can be used to select and annotate those observations that are likely to give the most gain in model performance. We propose an active learning algorithm that, in addition to selecting which observation to annotate, selects the precision of the annotation that is acquired. Assuming that annotations with low precision are cheaper to obtain, this allows the model to explore a larger part of the input space, with the same annotation budget. We build our acquisition function on the previously proposed BALD objective for Gaussian Processes, and empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.
Related papers
- Zero-shot Active Learning Using Self Supervised Learning [11.28415437676582]
We propose a new Active Learning approach which is model agnostic as well as one doesn't require an iterative process.
We aim to leverage self-supervised learnt features for the task of Active Learning.
arXiv Detail & Related papers (2024-01-03T11:49:07Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - FOCAL: A Cost-Aware Video Dataset for Active Learning [13.886774655927875]
annotation-cost refers to the time it takes an annotator to label and quality-assure a given video sequence.
We introduce a set of conformal active learning algorithms that take advantage of the sequential structure of video data.
We show that the best conformal active learning method is cheaper than the best traditional active learning method by 113 hours.
arXiv Detail & Related papers (2023-11-17T15:46:09Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Deep Active Learning with Noisy Oracle in Object Detection [5.5165579223151795]
We propose a composite active learning framework including a label review module for deep object detection.
We show that utilizing part of the annotation budget to correct the noisy annotations partially in the active dataset leads to early improvements in model performance.
In our experiments we achieve improvements of up to 4.5 mAP points of object detection performance by incorporating label reviews at equal annotation budget.
arXiv Detail & Related papers (2023-09-30T13:28:35Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation.
We propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences.
arXiv Detail & Related papers (2023-06-08T04:04:47Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning.
We tackle this issue by using an approach inspired by transfer learning.
We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion.
arXiv Detail & Related papers (2022-01-18T18:53:10Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Active Learning for Coreference Resolution using Discrete Annotation [76.36423696634584]
We improve upon pairwise annotation for active learning in coreference resolution.
We ask annotators to identify mention antecedents if a presented mention pair is deemed not coreferent.
In experiments with existing benchmark coreference datasets, we show that the signal from this additional question leads to significant performance gains per human-annotation hour.
arXiv Detail & Related papers (2020-04-28T17:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.