論文の概要: Multilingual Syntax-aware Language Modeling through Dependency Tree
Conversion
- arxiv url: http://arxiv.org/abs/2204.08644v1
- Date: Tue, 19 Apr 2022 03:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 23:21:43.755668
- Title: Multilingual Syntax-aware Language Modeling through Dependency Tree
Conversion
- Title(参考訳): 依存木変換による多言語構文認識言語モデリング
- Authors: Shunsuke Kando, Hiroshi Noji and Yusuke Miyao
- Abstract要約: 本研究では,9つの変換法と5つの言語にまたがるニューラル言語モデル(LM)の性能への影響について検討する。
平均して、私たちの最高のモデルのパフォーマンスは、すべての言語で最悪の選択に対して、19パーセントの精度向上を示しています。
我々の実験は、正しい木形式を選ぶことの重要性を強調し、情報的な決定を下すための洞察を提供する。
- 参考スコア(独自算出の注目度): 12.758523394180695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating stronger syntactic biases into neural language models (LMs) is
a long-standing goal, but research in this area often focuses on modeling
English text, where constituent treebanks are readily available. Extending
constituent tree-based LMs to the multilingual setting, where dependency
treebanks are more common, is possible via dependency-to-constituency
conversion methods. However, this raises the question of which tree formats are
best for learning the model, and for which languages. We investigate this
question by training recurrent neural network grammars (RNNGs) using various
conversion methods, and evaluating them empirically in a multilingual setting.
We examine the effect on LM performance across nine conversion methods and five
languages through seven types of syntactic tests. On average, the performance
of our best model represents a 19 \% increase in accuracy over the worst choice
across all languages. Our best model shows the advantage over
sequential/overparameterized LMs, suggesting the positive effect of syntax
injection in a multilingual setting. Our experiments highlight the importance
of choosing the right tree formalism, and provide insights into making an
informed decision.
- Abstract(参考訳): より強固な構文バイアスをニューラルネットワークモデル(lms)に組み込むことは長年の目標であるが、この分野の研究はしばしば英語のテキストのモデリングに焦点を当てている。
依存性ツリーバンクがより一般的である多言語設定への構成木ベースのLMの拡張は、依存性から定数への変換法によって可能である。
しかし、これはどの木形式がモデルを学ぶのに最適か、どの言語が最適かという疑問を提起する。
本稿では,様々な変換法を用いてリカレントニューラルネットワーク文法(recurrent neural network grammars,rnngs)を訓練し,多言語環境で経験的に評価する。
7種類の構文テストにより,9つの変換法と5つの言語にまたがるLM性能への影響を検討した。
平均して、最高のモデルの性能は、すべての言語で最悪の選択に対して、19パーセントの精度向上を示している。
最善のモデルは逐次的/過パラメータ化されたlmsよりも優れていることを示し,多言語環境での構文インジェクションの効果を示唆する。
我々の実験は、正しい木形式を選ぶことの重要性を強調し、情報的な決定を下すための洞察を提供する。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Improving Multilingual Neural Machine Translation System for Indic
Languages [0.0]
低リソース言語翻訳に関わる問題に対処する多言語ニューラルマシン翻訳(MNMT)システムを提案する。
提案モデルの実現には最先端のトランスフォーマーアーキテクチャを用いる。
大量のデータに対する試行は、従来のモデルよりもその優位性を明らかにしている。
論文 参考訳(メタデータ) (2022-09-27T09:51:56Z) - LyS_ACoru\~na at SemEval-2022 Task 10: Repurposing Off-the-Shelf Tools
for Sentiment Analysis as Semantic Dependency Parsing [10.355938901584567]
本稿では,バイファイン・セマンティック・依存性を用いた構造化感情分析の課題に対処する。
i)1つのツリーバンクでのトレーニング、(ii)異なる言語から来るツリーバンクのトレーニングによってセットアップを緩和する。
i) 他の言語で利用可能なツリーバンクを単語レベルで翻訳して、騒々しく、文法的にも、注釈付きのデータを得る。
評価後の段階では、英語のすべてのツリーを単純にマージする言語間モデルも訓練した。
論文 参考訳(メタデータ) (2022-04-27T10:21:28Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - Information-Theoretic Probing for Linguistic Structure [74.04862204427944]
本稿では,相互情報を推定するための情報理論による探索運用手法を提案する。
我々は,NLP研究でしばしば不足している10の型的多様言語について評価した。
論文 参考訳(メタデータ) (2020-04-07T01:06:36Z) - Cross-Lingual Adaptation Using Universal Dependencies [1.027974860479791]
複雑なNLPタスクのためのUD構文解析木を用いて訓練されたモデルは、非常に異なる言語を特徴付けることができることを示す。
UD解析木に基づいて,木カーネルを用いた複数のモデルを開発し,これらのモデルが英語データセットでトレーニングされた場合,他の言語のデータを正しく分類できることを示す。
論文 参考訳(メタデータ) (2020-03-24T13:04:06Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
英語以外の言語ではほとんど、あるいは全くデータがない場合に、複数の言語でのトレーニングモデルの設定を同時に検討する。
メタラーニングを用いて、この挑戦的な設定にアプローチできることが示される。
我々は、標準教師付きゼロショットのクロスランガルと、異なる自然言語理解タスクのための数ショットのクロスランガル設定を用いて実験を行った。
論文 参考訳(メタデータ) (2020-03-05T16:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。