論文の概要: Efficient Deep Learning-based Estimation of the Vital Signs on Smartphones
- arxiv url: http://arxiv.org/abs/2204.08989v3
- Date: Thu, 28 Mar 2024 16:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:22:33.364887
- Title: Efficient Deep Learning-based Estimation of the Vital Signs on Smartphones
- Title(参考訳): スマートフォン上でのバイタルサインの効率的な深層学習に基づく推定
- Authors: Taha Samavati, Mahdi Farvardin, Aboozar Ghaffari,
- Abstract要約: 本研究では,ディープラーニングを用いたモバイルベースのバイタルサイン推定のための新しいエンドツーエンドソリューションを提案する。
完全な畳み込みアーキテクチャを用いることで、提案したモデルはパラメータが少なく、計算量も少ない。
全体として、提案するエンドツーエンドアプローチは、容易に利用可能な家電製品上でのデバイス上での健康モニタリングの効率と性能を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing use of smartphones in our daily lives, these devices have become capable of performing many complex tasks. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. In particular, researchers have been exploring ways to estimate vital signs, such as heart rate, oxygen saturation levels, and respiratory rate, using algorithms that can be run on smartphones. However, many of these algorithms require multiple pre-processing steps that might introduce some implementation overheads or require the design of a couple of hand-crafted stages to obtain an optimal result. To address this issue, this research proposes a novel end-to-end solution to mobile-based vital sign estimation using deep learning that eliminates the need for pre-processing. By using a fully convolutional architecture, the proposed model has much fewer parameters and less computational complexity compared to the architectures that use fully-connected layers as the prediction heads. This also reduces the risk of overfitting. Additionally, a public dataset for vital sign estimation, which includes 62 videos collected from 35 men and 27 women, is provided. Overall, the proposed end-to-end approach promises significantly improved efficiency and performance for on-device health monitoring on readily available consumer electronics.
- Abstract(参考訳): 日々の生活でスマートフォンが使われるようになると、これらのデバイスは多くの複雑なタスクをこなせるようになった。
特に高齢者や特定の病気の患者に対しては, スマートフォンによるバイタルサインの連続的なモニタリングの必要性について, スマートフォンを用いたバイタルサインを推定するアルゴリズムの開発が世界中の研究者を惹きつけている。
特に研究者は、スマートフォン上で動作可能なアルゴリズムを用いて、心拍数、酸素飽和度、呼吸速度などの重要な兆候を推定する方法を模索している。
しかし、これらのアルゴリズムの多くは複数の前処理ステップを必要としており、いくつかの実装のオーバーヘッドを発生させたり、最適な結果を得るためにいくつかの手作りのステージの設計を必要としている。
この問題に対処するため,本研究では,事前処理の必要性を排除したディープラーニングを用いたモバイルベースのバイタルサイン推定のための,新しいエンドツーエンドソリューションを提案する。
完全畳み込み型アーキテクチャを用いることで、予測ヘッドとして完全に接続されたレイヤを使用するアーキテクチャと比較して、提案モデルはパラメータが少なく、計算量も少ない。
これにより、過度に適合するリスクも軽減される。
さらに、35人の男性と27人の女性から収集された62の動画を含む、バイタルサイン推定のためのパブリックデータセットも提供される。
全体として、提案するエンドツーエンドアプローチは、容易に利用可能な家電製品上でのデバイス上での健康モニタリングの効率と性能を大幅に向上させる。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
現在のオンデバイストレーニング手法は、破滅的な忘れを考慮せずに、効率的なトレーニングにのみ焦点をあてている。
本稿では,単純だが効果的なエッジフレンドリーなインクリメンタル学習フレームワークを提案する。
本手法は,メモリの削減と近似計算により,平均精度38.08%の高速化を実現する。
論文 参考訳(メタデータ) (2024-06-13T05:49:29Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
モバイルヘルス(英語: Mobile Health、mHealth)は、ウェアラブルセンサーを使用して、日常生活中の参加者の生理状態を高頻度で監視し、時間的に精度の高い健康介入を可能にする能力である。
豊富な計算文学にもかかわらず、既存の技術は多くのmHealthアプリケーションを構成する脈動信号には効果がない。
このギャップに対処するPulseImputeは、現実的なmHealth欠損モデル、幅広いベースラインセット、臨床関連下流タスクを含む、最初の大規模パルス信号計算チャレンジである。
論文 参考訳(メタデータ) (2022-12-14T21:39:15Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Efficient High-Resolution Deep Learning: A Survey [90.76576712433595]
スマートフォン、衛星、医療機器などの現代の機器のカメラは、非常に高解像度の画像やビデオを撮影することができる。
このような高解像度データは、がん検出、自動道路ナビゲーション、天気予報、監視、農業プロセスの最適化、その他多くの応用のためのディープラーニングモデルによって処理される。
ディープラーニングモデルの直接入力として高解像度の画像とビデオを使用することで、パラメータの多さ、計算コスト、推論レイテンシ、GPUメモリ使用量など、多くの課題が生じる。
文献におけるいくつかの研究は、高解像度データの課題に対処し、ハードウェアの制限に従いながら精度とスピードを改善するために、より良い代替案を提案する。
論文 参考訳(メタデータ) (2022-07-26T17:13:53Z) - PosePipe: Open-Source Human Pose Estimation Pipeline for Clinical
Research [0.0]
我々は臨床現場で取得したデータに対して最先端のアルゴリズムの実行を容易にする人間のポーズ推定パイプラインを開発する。
本研究の目的は,新しいアルゴリズムの訓練ではなく,臨床・翻訳研究における最先端のポーズ推定アルゴリズムの活用を推し進めることである。
論文 参考訳(メタデータ) (2022-03-16T17:54:37Z) - An adaptable cognitive microcontroller node for fitness activity
recognition [0.0]
ウォブルボード(英: Wobble board)は、足首の怪我を避けるために、または怪我後のリハビリの一環として、感覚運動の訓練に使用できる安価な装置である。
本研究では,ウルブルボードに適用可能な携帯型,電池駆動型マイクロコントローラデバイスを提案する。
電力消費を減らすために,ハードウェアとソフトウェアの構成を動的に管理し,実行時に必要な動作モードに適応する適応層を追加する。
論文 参考訳(メタデータ) (2022-01-13T18:06:38Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
身体運動のオンライン予測のためのヒューマンアクティビティ認識(HAR)手法を提案する。
我々は,監視ソフトウェアを含むHARシステムと加速度計とジャイロスコープデータを収集するモバイルアプリケーションを開発する。
この研究で6つの漸進的学習アルゴリズムが採用され、オフラインのHARシステムの開発によく使用されるバッチ学習アルゴリズムと比較される。
論文 参考訳(メタデータ) (2021-09-20T11:33:09Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
インターネット・オブ・メディカル・モノズ(IoMT)パラダイムは、複数の臨床試験や医療処置で主流になりつつある。
本研究では,資源制約型コンピューティングプラットフォームにおける認知データ解析アルゴリズムの実装について検討する。
コンボリューションニューラルネットワークを用いて心電図のトレースを分類する手法について検討した。
論文 参考訳(メタデータ) (2021-06-11T16:49:10Z) - YOLOpeds: Efficient Real-Time Single-Shot Pedestrian Detection for Smart
Camera Applications [2.588973722689844]
この研究は、スマートカメラアプリケーションにおけるディープラーニングに基づく歩行者検出の効率的な展開のために、精度と速度の良好なトレードオフを達成するという課題に対処する。
分離可能な畳み込みに基づいて計算効率の良いアーキテクチャを導入し、層間密結合とマルチスケール機能融合を提案する。
全体として、YOLOpedsは、既存のディープラーニングモデルよりも86%の速度で、毎秒30フレーム以上のリアルタイム持続的な操作を提供する。
論文 参考訳(メタデータ) (2020-07-27T09:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。