論文の概要: A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
- arxiv url: http://arxiv.org/abs/2204.09308v1
- Date: Wed, 20 Apr 2022 08:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 13:44:28.324239
- Title: A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
- Title(参考訳): aleatoric と epistemic uncertainty disentanglement のより深い考察
- Authors: Matias Valdenegro-Toro and Daniel Saromo
- Abstract要約: 本稿では,不整合不整合を生成する手法を一般化し,不整合不整合の定量化を行う。
本研究は,学習失語症とてんかん不確実性との間に相互作用があることを示し,失語症不確実性に対する仮定に違反していることを示す。
我々の定式化と結果は、実践者や研究者が不確実性を選択するのに役立ち、不確実性の利用を拡大するのに役立つと期待する。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are ubiquitous in many tasks, but trusting their predictions
is an open issue. Uncertainty quantification is required for many applications,
and disentangled aleatoric and epistemic uncertainties are best. In this paper,
we generalize methods to produce disentangled uncertainties to work with
different uncertainty quantification methods, and evaluate their capability to
produce disentangled uncertainties. Our results show that: there is an
interaction between learning aleatoric and epistemic uncertainty, which is
unexpected and violates assumptions on aleatoric uncertainty, some methods like
Flipout produce zero epistemic uncertainty, aleatoric uncertainty is unreliable
in the out-of-distribution setting, and Ensembles provide overall the best
disentangling quality. We also explore the error produced by the number of
samples hyper-parameter in the sampling softmax function, recommending N > 100
samples. We expect that our formulation and results help practitioners and
researchers choose uncertainty methods and expand the use of disentangled
uncertainties, as well as motivate additional research into this topic.
- Abstract(参考訳): ニューラルネットワークは多くのタスクでユビキタスですが、予測を信頼することはオープンな問題です。
不確かさの定量化は多くの応用に必要であり、不確実性や認識の不確実性が最適である。
本稿では,異なる不確実性定量化法を用いて不連続不確実性を生成する方法を一般化し,不連続不確実性を生成する能力を評価する。
また,flipoutのような手法は認識的不確かさをゼロにし,アリュータ的不確実性は分配外設定では信頼性が低く,アンサンブルは全体として最良の不一致品質を提供する。
また,サンプリングソフトマックス関数におけるサンプルパラメータ数による誤差についても検討し,N>100サンプルを推奨する。
当社の定式化と成果は,不確実性の選択や不確実性の利用拡大に寄与すると同時に,このトピックに対するさらなる研究の動機となることを期待する。
関連論文リスト
- How disentangled are your classification uncertainties? [6.144680854063938]
機械学習における不確実性定量化は、予測における不確実性の原因を予測するために進んでいる。
本研究は,失語症およびてんかんの不確かさの解消を評価するための一連の実験を提案する。
論文 参考訳(メタデータ) (2024-08-22T07:42:43Z) - A unified uncertainty-aware exploration: Combining epistemic and
aleatory uncertainty [21.139502047972684]
そこで本稿では, リスク感応探索における浮腫性およびてんかん性不確実性の複合効果を定量的に評価するアルゴリズムを提案する。
本手法は,パラメータ化された回帰分布を推定する分布RLの新たな拡張の上に構築する。
探索課題とリスク課題を伴う課題に対する実験結果から,本手法が代替手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-01-05T17:39:00Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - How certain are your uncertainties? [0.3655021726150368]
ディープラーニング手法の出力の不確実性の尺度は、いくつかの点で有用である。
本研究では、これらの不確実性の測定の安定性について、大きさと空間パターンの両方の観点から検討する。
論文 参考訳(メタデータ) (2022-03-01T05:25:02Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Deterministic Neural Networks with Appropriate Inductive Biases Capture
Epistemic and Aleatoric Uncertainty [91.01037972035635]
変化を最小限に抑えた1つのソフトマックスニューラルネットがディープアンサンブルの不確実性予測を破ることが示される。
適切な誘導バイアスで、最大で訓練されたソフトマックスニューラルネットは、特徴空間密度を通じて確実な不確実性を確実に捉えていることを示す。
論文 参考訳(メタデータ) (2021-02-23T09:44:09Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。