論文の概要: Epistemic Uncertainty-Weighted Loss for Visual Bias Mitigation
- arxiv url: http://arxiv.org/abs/2204.09389v1
- Date: Wed, 20 Apr 2022 11:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 18:10:39.484922
- Title: Epistemic Uncertainty-Weighted Loss for Visual Bias Mitigation
- Title(参考訳): 視覚バイアス軽減のためのてんかん性不確かさ重み付き損失
- Authors: Rebecca S Stone, Nishant Ravikumar, Andrew J Bulpitt, David C Hogg
- Abstract要約: 偏見の存在を完全に無視する探索手法の妥当性を論じる。
本手法は、バイアスベンチマークデータセットや実世界の顔検出問題において、視覚バイアスを緩和する可能性があることを示す。
- 参考スコア(独自算出の注目度): 3.427639528860287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are highly susceptible to learning biases in visual
data. While various methods have been proposed to mitigate such bias, the
majority require explicit knowledge of the biases present in the training data
in order to mitigate. We argue the relevance of exploring methods which are
completely ignorant of the presence of any bias, but are capable of identifying
and mitigating them. Furthermore, we propose using Bayesian neural networks
with an epistemic uncertainty-weighted loss function to dynamically identify
potential bias in individual training samples and to weight them during
training. We find a positive correlation between samples subject to bias and
higher epistemic uncertainties. Finally, we show the method has potential to
mitigate visual bias on a bias benchmark dataset and on a real-world face
detection problem, and we consider the merits and weaknesses of our approach.
- Abstract(参考訳): ディープニューラルネットワークは、視覚データのバイアスの学習に非常に影響を受けやすい。
このようなバイアスを軽減するために様々な方法が提案されているが、大多数はトレーニングデータに存在するバイアスの明示的な知識を必要とする。
我々は、バイアスの存在を全く知らないが、それらを識別し緩和することができる手法を探索することの関連性を議論する。
さらに,個々のトレーニングサンプルの潜在的なバイアスを動的に同定し,トレーニング中に重み付けするために,てんかん性不確実性重み付き損失関数を持つベイズニューラルネットワークを提案する。
バイアスを受けるサンプルと認識の不確実性が高いサンプルとの間には正の相関関係が見いだされる。
最後に,バイアスベンチマークデータセットと実世界の顔検出問題において,視覚バイアスを軽減できる可能性を示し,本手法のメリットと弱点について考察する。
関連論文リスト
- Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
合成および実際のベンチマークデータセット上で、最先端のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a
Bayesian Neural Network [7.488317734152586]
ベイズニューラルネットワークを用いた新しい暗黙的緩和法を提案する。
提案手法は,高い不確実性に寄与しないコア特徴に注目することを促す。
論文 参考訳(メタデータ) (2023-03-29T09:47:35Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Visual Recognition with Deep Learning from Biased Image Datasets [6.10183951877597]
視覚認知の文脈において、バイアスモデルがどのように治療問題に適用できるかを示す。
作業中のバイアス機構に関する(近似的な)知識に基づいて、我々のアプローチは観察を再重み付けする。
本稿では,画像データベース間で共有される低次元画像表現を提案する。
論文 参考訳(メタデータ) (2021-09-06T10:56:58Z) - Bayesian analysis of the prevalence bias: learning and predicting from
imbalanced data [10.659348599372944]
本稿では,モデル学習のための理論的および計算的枠組みと,有病率バイアスの存在下での予測について述べる。
原則的なトレーニング損失の代替として,要約曲線から操作点を選択することで,テスト時の手順を補完するものだ。
バックプロパゲーションを用いた(深い)学習の現在のパラダイムにシームレスに統合され、ベイズモデルと自然に結合する。
論文 参考訳(メタデータ) (2021-07-31T14:36:33Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。