A Corpus for Understanding and Generating Moral Stories
- URL: http://arxiv.org/abs/2204.09438v1
- Date: Wed, 20 Apr 2022 13:12:36 GMT
- Title: A Corpus for Understanding and Generating Moral Stories
- Authors: Jian Guan, Ziqi Liu, Minlie Huang
- Abstract summary: We propose two understanding tasks and two generation tasks to assess these abilities of machines.
We present STORAL, a new dataset of Chinese and English human-written moral stories.
- Score: 84.62366141696901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Teaching morals is one of the most important purposes of storytelling. An
essential ability for understanding and writing moral stories is bridging story
plots and implied morals. Its challenges mainly lie in: (1) grasping knowledge
about abstract concepts in morals, (2) capturing inter-event discourse
relations in stories, and (3) aligning value preferences of stories and morals
concerning good or bad behavior. In this paper, we propose two understanding
tasks and two generation tasks to assess these abilities of machines. We
present STORAL, a new dataset of Chinese and English human-written moral
stories. We show the difficulty of the proposed tasks by testing various models
with automatic and manual evaluation on STORAL. Furthermore, we present a
retrieval-augmented algorithm that effectively exploits related concepts or
events in training sets as additional guidance to improve performance on these
tasks.
Related papers
- What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation [57.550045763103334]
evaluating a story can be more challenging than other generation evaluation tasks.
We first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual.
We propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation.
arXiv Detail & Related papers (2024-08-26T20:35:42Z) - What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts
and Rationales for Disambiguating Defeasible Social and Moral Situations [48.686872351114964]
Moral or ethical judgments rely heavily on the specific contexts in which they occur.
We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable.
We distill a high-quality dataset of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions.
arXiv Detail & Related papers (2023-10-24T00:51:29Z) - CHAE: Fine-Grained Controllable Story Generation with Characters,
Actions and Emotions [10.694612203803146]
This paper proposes a model for fine-grained control on the story.
It allows the generation of customized stories with characters, corresponding actions and emotions arbitrarily assigned.
It has strong controllability to generate stories according to the fine-grained personalized guidance.
arXiv Detail & Related papers (2022-10-11T07:37:50Z) - Don't Copy the Teacher: Data and Model Challenges in Embodied Dialogue [92.01165203498299]
Embodied dialogue instruction following requires an agent to complete a complex sequence of tasks from a natural language exchange.
This paper argues that imitation learning (IL) and related low-level metrics are actually misleading and do not align with the goals of embodied dialogue research.
arXiv Detail & Related papers (2022-10-10T05:51:40Z) - Incorporating Commonsense Knowledge into Story Ending Generation via
Heterogeneous Graph Networks [16.360265861788253]
We propose a Story Heterogeneous Graph Network (SHGN) to explicitly model both the information of story context at different levels and the multi-grained interactive relations among them.
In detail, we consider commonsense knowledge, words and sentences as three types of nodes.
We design two auxiliary tasks to implicitly capture the sentiment trend and key events lie in the context.
arXiv Detail & Related papers (2022-01-29T09:33:11Z) - A guided journey through non-interactive automatic story generation [0.0]
The article presents requirements for creative systems, three types of models of creativity (computational, socio-cultural, and individual), and models of human creative writing.
The article concludes that the autonomous generation and adoption of the main idea to be conveyed and the autonomous design of the creativity ensuring criteria are possibly two of most important topics for future research.
arXiv Detail & Related papers (2021-10-08T10:01:36Z) - Contextualized moral inference [12.574316678945195]
We present a text-based approach that predicts people's intuitive judgment of moral vignettes.
We show that a contextualized representation offers a substantial advantage over alternative representations.
arXiv Detail & Related papers (2020-08-25T00:34:28Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories.
We employ multi-task learning which combines a discriminative objective to distinguish true and fake stories.
Our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
arXiv Detail & Related papers (2020-01-15T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.