Quality of Service in Quantum Networks
- URL: http://arxiv.org/abs/2204.09538v2
- Date: Thu, 28 Jul 2022 19:35:00 GMT
- Title: Quality of Service in Quantum Networks
- Authors: Claudio Cicconetti and Marco Conti and Andrea Passarella
- Abstract summary: We take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks.
Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the coming years, quantum networks will allow quantum applications to
thrive thanks to the new opportunities offered by end-to-end entanglement of
qubits on remote hosts via quantum repeaters. On a geographical scale, this
will lead to the dawn of the Quantum Internet. While a full-blown deployment is
yet to come, the research community is already working on a variety of
individual enabling technologies and solutions. In this paper, with the
guidance of extensive simulations, we take a broader view and investigate the
problems of Quality of Service (QoS) and provisioning in the context of quantum
networks, which are very different from their counterparts in classical data
networks due to some of their fundamental properties. Our work leads the way
towards a new class of studies that will allow the research community to better
understand the challenges of quantum networks and their potential commercial
exploitation.
Related papers
- A Brief Introduction to Quantum Network Control [7.952919774651851]
Quantum networking is an emerging area with the potential to transform information processing and communications.
We present a brief introduction to quantum network control, an area dedicated to designing algorithms for distributing entanglement (i.e., entangled qubits)
We present a model for distributing entanglement in a multi-hop quantum network to enable applications such as quantum key distribution and distributed quantum computing.
arXiv Detail & Related papers (2024-07-29T11:21:45Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Reconfigurable Quantum Internet Service Provider [13.854695863568166]
We demonstrate the concept of quantum internet service provider (QISP)
We construct a reconfigurable QISP comprising both the quantum hardware and classical control software.
Our experiment demonstrates the robust capabilities of the QISP.
arXiv Detail & Related papers (2023-05-15T22:19:00Z) - Service Differentiation and Fair Sharing in Distributed Quantum
Computing [0.0]
In the future, quantum computers will become widespread and a network of quantum repeaters will provide them with end-to-end entanglement of remote quantum bits.
This paper investigates the issue of service differentiation in this new environment.
We then define the problem of how to select which computation nodes should participate in each pool.
arXiv Detail & Related papers (2023-01-10T14:16:42Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.