Guarantees on the structure of experimental quantum networks
- URL: http://arxiv.org/abs/2403.02376v2
- Date: Fri, 15 Nov 2024 10:02:40 GMT
- Title: Guarantees on the structure of experimental quantum networks
- Authors: Andrés Ulibarrena, Jonathan W. Webb, Alexander Pickston, Joseph Ho, Alessandro Fedrizzi, Alejandro Pozas-Kerstjens,
- Abstract summary: Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
- Score: 105.13377158844727
- License:
- Abstract: Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing. As these networks grow in size, certification tools will be required to answer questions regarding their properties. In this work we demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network. We apply quantum inflation methods to data obtained in quantum group encryption experiments, guaranteeing the impossibility of producing the observed results in networks with fewer optical elements. Our results pave the way for scalable methods of obtaining device-independent guarantees on the network structure underlying multipartite quantum protocols.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Source-independent quantum secret sharing with entangled photon pair networks [15.3505990843415]
We present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks.
Our protocol has great performance and technical advantages in future quantum networks.
arXiv Detail & Related papers (2024-07-23T13:24:28Z) - Certifying the Topology of Quantum Networks: Theory and Experiment [0.0]
It is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed.
Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources.
We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons.
arXiv Detail & Related papers (2023-09-22T14:50:38Z) - Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach [14.308249733521182]
Large-scale quantum networks, known as quantum internet, hold great promises for advanced distributed quantum computing and long-distance quantum communication.
We propose a novel diagrammatic way of visualizing information flow dynamics within the quantum network.
We also propose a quantum information scrambling protocol, where a specific node scrambles secret quantum information across the entire network.
arXiv Detail & Related papers (2023-09-19T06:48:42Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Characterizing arbitrary quantum networks in the noisy
intermediate-scale quantum era [0.0]
We provide a systematic approach to tackle with arbitrary quantum networks in the NISQ era.
One application of our method is to witness the progress of essential elements in quantum networks.
arXiv Detail & Related papers (2022-10-25T03:36:02Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.